stats-lite ===== [![NPM](https://nodei.co/npm/stats-lite.png)](https://nodei.co/npm/stats-lite/) A fairly light statistical package. Works with numeric arrays, and will automatically filter out non-numeric values and attempt to convert string numeric values. ## Install ``` npm install stats-lite --save ``` Example --- [Live Demo using Browserify!](http://requirebin.com/embed?gist=brycebaril/9591291) ```javascript var stats = require("stats-lite") var dice = require("dice") var rolls = [] for (var i = 0; i < 3000; i++) { rolls.push(dice.sum(dice.roll("2d6"))) } console.log("sum: %s", stats.sum(rolls)) console.log("mean: %s", stats.mean(rolls)) console.log("median: %s", stats.median(rolls)) console.log("mode: %s", stats.mode(rolls)) console.log("variance: %s", stats.variance(rolls)) console.log("standard deviation: %s", stats.stdev(rolls)) console.log("sample standard deviation: %s", stats.sampleStdev(rolls)) console.log("85th percentile: %s", stats.percentile(rolls, 0.85)) console.log("histogram:", stats.histogram(rolls, 10)) /* Your exact numbers may vary, but they should be pretty similar: sum: 21041 mean: 7.0136666666666665 median: 7 mode: 7 variance: 5.8568132222220415 standard deviation: 2.4200853749861886 sample standard deviation: 2.4204888234135953 85th percentile: 10 histogram { values: [ 94, 163, 212, 357, 925, 406, 330, 264, 164, 85 ], bins: 10, binWidth: 1.05, binLimits: [ 1.75, 12.25 ] } */ ``` **Compatibility Notice**: Version 2.0.0+ of this library use features that require Node.js v4.0.0 and above API === All of the exported functions take `vals` which is an array of numeric values. Non-numeric values will be removed, and string numbers will be converted to Numbers. **NOTE**: This will impact some operations, e.g. `mean([null, 1, 2, 3])` will be calculated as `mean([1, 2, 3])`, (e.g. `6 / 3 = 2`, NOT `6 / 4 = 1.5`) `numbers(vals)` --- Accepts an array of values and returns an array consisting of only numeric values from the source array. Converts what it can and filters out anything else. e.g. ```js numbers(["cat", 1, "22.9", 9]) // [1, 22.9, 9] ``` `sum(vals)` --- [Sum](http://en.wikipedia.org/wiki/Summation) the values in the array. `mean(vals)` --- Calculate the [mean](http://en.wikipedia.org/wiki/Mean) average value of `vals`. `median(vals)` --- Calculate the [median](http://en.wikipedia.org/wiki/Median) average value of `vals`. `mode(vals)` --- Calculate the [mode](http://en.wikipedia.org/wiki/Mode_statistics) average value of `vals`. If `vals` is multi-modal (contains multiple modes), `mode(vals)` will return a ES6 Set of the modes. `variance(vals)` --- Calculate the [variance](http://en.wikipedia.org/wiki/Variance) from the mean for a population. `stdev(vals)` --- Calculate the [standard deviation](http://en.wikipedia.org/wiki/Standard_deviation) of the values from the mean for a population. `sampleVariance(vals)` --- Calculate the [variance](http://en.wikipedia.org/wiki/Variance) from the mean for a sample. `sampleStdev(vals)` --- Calculate the [standard deviation](http://en.wikipedia.org/wiki/Standard_deviation) of the values from the mean for a sample. `percentile(vals, ptile)` --- Calculate the value representing the desired [percentile](http://en.wikipedia.org/wiki/Percentile) `(0 < ptile <= 1)`. Uses the Estimation method to interpolate non-member percentiles. `histogram(vals[, bins])` --- Build a histogram representing the distribution of the data in the provided number of `bins`. If `bins` is not set, it will choose one based on `Math.sqrt(vals.length)`. Data will look like: ``` histogram { values: [ 86, 159, 253, 335, 907, 405, 339, 270, 146, 100 ], bins: 10, binWidth: 1.05, binLimits: [ 1.75, 12.25 ] } ``` Where `values` are the bins and the counts of the original values falling in that range. The ranges can be calculated from the `binWidth` and `binLimits`. For example, the first bin `values[0]` in this example is from `1.75 < value <= 2.8`. The third bin `values[2]` would be `1.75 + (1.05 * 2) < value <= 1.75 + (1.05 * 3)` or `3.85 < value <= 4.9`. LICENSE ======= MIT