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Abstract—Content Delivery Network (CDN) and Hypertext
Transfer Protocol Secure (HTTPS) are two popular but in-
dependent web technologies, each of which has been well
studied individually and independently. This paper provides
a systematic study on how these two work together. We
examined 20 popular CDN providers and 10,721 of their
customer web sites using HTTPS. Our study reveals vari-
ous problems with the current HTTPS practice adopted by
CDN providers, such as widespread use of invalid certificates,
private key sharing, neglected revocation of stale certificates,
and insecure back-end communication. While some of those
problems are operational issues only, others are rooted in
the fundamental semantic conflict between the end-to-end
nature of HTTPS and the man-in-the-middle nature of CDN
involving multiple parties in a delegated service. To address
the delegation problem when HTTPS meets CDN, we proposed
and implemented a lightweight solution based on DANE (DNS-
based Authentication of Named Entities), an emerging IETF
protocol complementing the current Web PKI model. Our
implementation demonstrates that it is feasible for HTTPS to
work with CDN securely and efficiently. This paper intends
to provide a context for future discussion within security and
CDN community on more preferable solutions.

I. INTRODUCTION

Content Delivery Networks (CDNs) are widely deployed

to improve the performance, scalability and security of web

sites. They were originally used to reduce the latency of

web access by redirecting the user to a surrogate server (or

cache server) close to the user, as well as to lighten the

load of original web servers. In recent years, CDN providers

also start to offer DDoS mitigation services by hiding the

original web site and distributing the load of attack traffic

to multiple surrogate servers. By deploying web application

firewalls on cache servers, CDNs can also filter intrusions

against original servers.

With CDNs, web access terminates at one of the surrogate

servers distributed across the Internet, returning cached

content. However, this “man-in-the-middle (MITM)” model

introduces additional complexity in other techniques that

were designed for end-to-end communication. HTTPS (or

HTTP over TLS) is one such end-to-end protocol, which

establishes encrypted tunnels to deliver sensitive information

between clients and web servers. Web server operators

can obtain certificates from a Certificate Authority (CA),

which is trusted by both the server and client browsers. On

accessing an HTTPS enabled web site, a client can validate

the server’s identity by verifying the server’s certificate (e.g.

whether it is issued by a trusted CA, and whether the

server domain name matches the information listed in the

certificate).

However, when a CDN (the “man-in-the-middle”) is used,

the CDN server cuts in the middle of HTTPS commu-

nications, and splits HTTPS into two parts: the front-end

communication between end-user and CDN surrogate server,

and the back-end communication between CDN surrogate

server and original web server. In this case, the trust model

and the establishment of the secure tunnel between two

parties (a client and a web server) now involve three parties.

While the back-end interaction is similar to original HTTPS,

the front-end communication becomes complicated. Because

adding an additional party in the HTTPS communication

not only requires changes to the setup of the secure tunnel

(such as using a different certificate), but also requires

additional user awareness and delegation control, none of

which need to be considered in the pure two party end-

to-end HTTPS model. Specifically, when the owner of a

web site delegates his authentication information of HTTPS

to some CDN providers, there should be a mechanism that

informs end-users of the delegation. Moreover, the web site

owner should be able to efficiently and independently revoke

his/her delegation from a CDN provider at his/her own will

(without the need of an approval from the current CDN

provider, e.g. in the case of changing CDN providers).

This paper studies the current practices of using HTTPS

with CDNs. For the front-end communication, we inves-

tigated 20 popular CDN providers and 10,721 of their

customer web sites. These web sites enable HTTPS access

and use CDN through DNS based request-routing, which

is a dominant mechanism to adopt CDN service in the

Internet. Among these 10,721 web sites using HTTPS with

CDNs, we observed that 15% of them raised alerts of

invalid certificates, which broke the trust model of HTTPS.

For those without certificate warnings, we observed that

they used two types of certificates: Custom Certificate and

Shared Certificate.

A Custom Certificate requires web site owners to upload
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their certificates and private keys to CDN providers. Es-

sentially, sharing private keys between web sites and CDN

providers violates the fundamental setting of public key

cryptography. Practically, the owners of the original web

sites are exposed to more security risks by sharing private

keys with CDN providers since CDN providers may dis-

tribute this sensitive information to all their nodes across the

Internet. Moreover, web sites cannot revoke their delegations

from CDN providers independently and efficiently.

In the case of Shared Certificate, the CDN relies on a

partner CA to issue a certificate valid for multiple domain

names. To ensure web clients receiving a valid certificate,

the CDN provider adds the customer’s domain name into

the Subject Alternative Name (SAN) extension [1] of his

certificate. However, the proof of delegation, expressed by

the shared certificate only, is not complete (see §IV-A2),

which results in the loss of the functionality of HTTPS

in displaying proper security indicators to end-users. For

example, assume the web site owner has applied for an EV

(Extended Validation) certificate to enhance the web site’s

assurance level, then he will have no way to show it to web

site’s users, but to share a low level DV (Domain Validated)

certificate indicator belonging to his CDN provider. What’s

more, our experience shows that there exists a problem of

delegating revocation in this mechanism as well.

For the back-end communication, we measured the behav-

ior of five CDN providers and found that they were all far

from perfect. Two of them used HTTP rather than HTTPS

for back-end communication. The other three, although they

used HTTPS, did not perform proper authentication when

establishing the secure channel, and thus were vulnerable to

MITM attack.

To address the challenges of deploying HTTPS with

CDN, we first examine a potential solution using an existing

technique called name constraint certificate. In this approach,

the web site owner plays the role of subordinate CA to issue

certificates to CDN providers, constrained to the owner’s

domain. Although this solution is theoretically feasible and

without any protocol modification, we consider that it is not

practical in deployment for the following three reasons. First,

we found a vulnerability in some popular web browsers that

could be used to bypass name constraints easily. Second, the

approach poses heavy overhead on web site owners because

of the need of running a subordinate CA. Further, commer-

cial CAs are unlikely motivated to allow their customers

being subordinate CAs because of heavy vetting and auditing

responsibilities.

We then propose another solution by extending an emerg-

ing technique called DANE. In this solution, the web site’s

owner could show his delegation explicitly with his TLSA

records which associate both the web site’s and the CDN

provider’s certificates. And thus the end-user can verify the

identities of both the original web site and the CDN provider,

as well as the delegation between them. Our analysis and

implementation show that this solution could address the

problem of HTTPS in CDN effectively.

In summary, we make the following contributions in this

paper:

• analysis on the problems and challenges for deploying

HTTPS in CDN;

• measurements to investigate current techniques for

HTTPS in CDN providers , identifying their defects

and practice issues;

• the discovery and experiment on the problem of X.509

certificate name constraints for HTTPS usage;

• a lightweight and flexible DANE-based solution that

addresses HTTPS authentication problem in CDN en-

vironment.

The remainder of the paper is organized as follows. We

review the background of CDN and HTTPS in Section II.

Section III explains the problems and challenges of compos-

ing these two together. Section IV measures the status quo

and analyzes the defects. We then present why we consider

the name constraint certificate as a practically questionable

solution in Section V and propose a new solution based on

DANE in Section VI. We also give further discussions on

the problem in Section VII. Section VIII describes related

work and Section IX gives a conclusion.

II. BACKGROUND

A. CDN

Overview. A CDN is a distributed infrastructure that effi-

ciently delivers web-related content to end-users. Originally,

CDN service was used to reduce the latency of accessing

the web site for users as well as lighten the load on web

site’s origin server. Recently, CDN providers also offer new

security services for web sites, such as DDoS protection and

Web Application Firewall (WAF).

A CDN is usually composed of a large number of surro-

gate servers distributed all around the world. If a web site

uses the CDN service, a subset of the surrogate servers in

the CDN will replicate that web site’s content, either by pull

or by push method. When users access the web site, they

will be directed to the CDN and finally get the content from

a nearby surrogate server rather than the web site’s origin

server.

Request-routing Mechanism. Request-routing tech-

niques are the key component for CDN services since

they are responsible of directing user requests from the

original web site to the CDN and further to the appropriate

surrogates, according to various policies and metrics. Many

request-routing techniques are introduced in [2], but in this

paper, we only focus on the three most common techniques:

URL rewriting, CNAME and domain hosting.

• URL Rewriting. URL rewriting modifies the URL of

specific content (e.g. images, css, scripts) in the origin

web site. Thus when users access the web site and load
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the content with modified URL, they will switch to visit

the CDN to get the content.

• CNAME. CNAME (canonical name) is a type of DNS

record that links a domain name to another name.

By using CNAME records, the web site owner could

point his domain name to a CDN’s domain name as

an alias, so that when users visit the web site, they

will be eventually redirected to the CDN’s domain

name through DNS resolution, which is translated to IP

addresses of some surrogates according to the CDN’s

policy at last.

• Domain Hosting. Domain hosting means a web site

uses CDN’s DNS server as the authoritative name

server for its domain. Thus the resolution of the web

site’s domain name is controlled by the CDN provider,

who directly points the web site’s domain name to the

IP addresses of its surrogate servers.

All of the three request-routing techniques have their own

advantages and limitations. While URL rewriting technique

offers fine grained redirection control for web sites, it re-

quires content modifications in the origin web sites, which is

tedious and error-prone; URL rewriting is also not applicable

for DDoS or WAF protection, which usually require domain-

level redirection. CNAME and domain hosting offer great

convenience and flexibility that address the limitations of

URL rewriting, however, they also lose URL rewriting’s

fine grained redirection control. Besides, CNAME could

introduce additional overhead of DNS resolution.

B. HTTPS

Overview. HTTPS provides secure end-to-end communi-

cation channels between web servers and clients. In essence,

HTTPS simply layers HTTP on the top of the Transport

Layer Security (TLS) protocol, which provides a number of

security primitives, such as authentication and encryption,

against passive eavesdroppers and active attackers.

Concretely, HTTPS relies on the X.509 certificate and

public key infrastructure (PKI) for server authentication. In

the X.509 [3] system1, a certificate is signed by a trusted

certificate authority (CA) to bind a public key with a domain

name. When accessing a server of a web site, a client first

validates the certificate of the web site, and then uses the

associated public key in the certificate to negotiate a session

key with the server for further secure communications.

Certificate Validation. Modern web browsers perform

certificate validation in three steps: chain validation, name

validation and revocation check. If any step fails, browsers

will show users various warnings to indicate potential risks

of invalid certificates.

• Chain Validation. In current practice, a number of

trusted root CAs are distributed with browsers or op-

1In this paper, we refer by the X.509 system to the X.509 based public
key infrastructure, standardized by the PKIX working group of the IETF,
rather than the standards developed by the ITU-T.

erating systems by default. Usually these root CAs

will not directly issue server certificates, instead they

delegate their signature ability to intermediate CAs that

actually sign server certificates. Therefore, normally, a

web server presents a complete certificate chain con-

taining its certificate as well as all the intermediate CA

certificates when performing a TLS/SSL handshake. A

browser then verifies whether the certificates can form

a complete chain by checking the signature and the

valid period for each certificate, starting at the server

certificate and ending at a trusted root CA.

• Name Validation. Apart from verifying the certificate

chain, the browser also examines the domain name

in the certificate to determine whether the certificate

pertains to the current web site. The current practice

utilizes two fields of a certificate to present its domain

name: the Common Name (CN) field, and the Sub-

ject Alternative Name (SAN) extension which enables

a certificate to include multiple domain names. For

convenience, domain names in the certificate may use

wildcards to cover all their subdomains (e.g. using

*.example.com to represent all direct sub domains

of example.com).

• Revocation Checking. In many cases, such as private

key compromise, a CA needs to revoke an issued cer-

tificate before its expiration date. The key to certificate

revocation is to publish revoked certificates in time

so that a browser can recognize those certificates are

invalid even though they pass the above validation.

Currently two mechanisms have been widely adopted

for certificate revocation: Certificate Revocation List

(CRL) and Online Certificate Status Protocol (OCSP).

– CRL. A CRL contains a signed list containing

serial numbers of certificates that are revoked by

a CA. Browsers could fetch a current certificate’s

CRL from the CRL Distribution Points

extension of a certificate to check its revocation

status.

A big problem of CRLs is the size. As the size of

a CRL constantly increases, the overhead of distri-

bution will eventually become unmanageable. Also

because of the overhead, CRLs are not updated in

a timely manner. Currently the publish periods can

be one or more weeks.

– OCSP. OCSP [1] is proposed as an alternative to

CRL, which addresses the problems of CRLs by

using a real-time protocol. Instead of downloading

the whole CRL, a browser using OCSP queries an

online server specified in the authority information

access (AIA) extension of a certificate to check its

revocation status.

As a real-time protocol, the efficiency of OCSP

depends on the capability of the OCSP servers
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(a) In HTTPS, the authentication between Alice
and Bob is straightforward.

(b) Together with Carol, i.e. CDN provider, the
process of secure browsing is split into two ends:
front-end and back-end. Both of the two ends
need to be protected with HTTPS and certificate
authentication against attackers. Specifically, the
authentication in the front-end, which involves
three parties, cannot be directly addressed with
standard HTTPS.

(c) To ensure secure web browsing in this setting,
the back-end communication should first be pro-
tected with standard HTTPS. In addition, to solve
the problem of front-end authentication, Carol
should be able to show Bob a delegation token
along with her certificate to convince Bob that
she is delegated by Alice.

Figure 1. A conceptual view of the authentication problem and solution for composing HTTPS with CDN.

running by CAs. A recent study suggested that

the OCSP servers were indeed overwhelmed and

OCSP checking brought considerable latencies [4].

A few refinements on top of CRL and OCSP have

also been proposed to reduce client-side overhead. Re-

cently, Google developed a proprietary mechanism called

CRLSet [5], which is deployed on its Chrome browser.

In CRLSet, Google collects the updated CRLs from all

CAs, and efficiently pushes the set of CRLs to clients

with its global infrastructure. CRLset enables browsers to

check CRLs locally and thus avoids network latencies.

OCSP stapling [6] is another alternative approach to check

the revocation status of certificates. It inserts the time-

stamped OCSP response signed by OCSP server into the

TLS/SSL handshake, hence clients could check the status

of certificates without querying the OCSP server. Currently,

OCSP stapling is supported by a number of vendors, such

as OpenSSL, Firefox, Apache, and Nginx.

Certificate Types. Currently, commercial CAs provide

three kinds of certificates for HTTPS communication: Do-

main Validated (DV), Organization Validated (OV) and

Extended Validated (EV), which have successively higher

levels of identity assurance because of the different require-

ments in identity verification. For issuing a DV certificate,

a CA only validates the ownership of the domain name in

the certificate request through simple channels such as E-

mail. By contrast, OV certificate and EV certificate undergo

more rigorous vetting. To issue such certificates, the CA is

required to verify ownership of the domain name as well

as the actual identity of the domain operator. What’s more,

while DV certificate usually only contains web site’s domain

name, OV certificate and EV certificate will also contain the

identity information (e.g. organization name, country) of the

web site.

The three types of certificates also have technical im-

plications. In fact, the goals of HTTPS are not only to

secure communication channel between browsers and web

servers, but also to notify users to what extent their web

surfings are assured by various browser indicators. Different

certificate types play different technical roles in the latter

part. Specifically, an EV certificate is different from the

other two types in that it displays a more visible indicator in

browser address bar to attest a highly-assured domain name

and its associated web content.

III. WHEN HTTPS MEETS CDN: PROBLEMS AND

CHALLENGES

While HTTPS provides server authentication and secure

communication between user and web site2, CDNs enable

efficient content delivery. Both play important roles in

today’s web services. However, we observe that these two

techniques cannot work together seamlessly.

Figure 1 depicts a conceptual view of how adoption of

CDN changes secure web browsing with HTTPS dramati-

cally. In Figure 1a, when a user accesses a web site (Alice)

over HTTPS, the user’s browser (Bob) starts by saying hello

to Alice, and receives Alice’s certificate after establishing a

connection. Bob then happily believes the conversation is

secure since Alice’s certificate binds the connection with

his initial hello message. However, upon adopting a CDN

service provided by Carol (Figure 1b), the process is split

into two ends: in front-end, Bob still starts the conversation

2We do not consider certificate-based client authentication of HTTPS
with CDN in this paper.
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with a hello message to Alice, yet eventually connects to

Carol; in back-end, assuming a pull based strategy, Carol

needs to fetch the content from Alice upon receiving request

from Bob.

Under the scenario of Figure 1b, both of the front-end

communication and back-end communication need to be

protected by HTTPS with certificate authentication, in order

to ensure secure web browsing against passive eavesdroppers

and active attackers, as guaranteed in the original HTTPS

communication in Figure 1a. However, this is not easy to

achieve.

For the back-end communication, it is essential for Carol

to authenticate Alice in order to detect impersonation at-

tacks. A mutual authentication, though not necessary, could

also help Alice to reject unsolicited requesters early. This

is not considered technically challenging to implement with

standard HTTPS. Yet, as we shall see in Section IV, this is

not always the case in current practice.

The case of the front-end communication is rather com-

plicated, as the conversation actually involves three parties,

consequently the authentication cannot be directly addressed

by standard HTTPS, which is a two-party protocol (without

considering CA). As shown in Figure 1b, if the initial

message sent by Bob and the certificate he received do not

match, Bob will show user an invalid certificate warning,

which undermines the effectiveness of HTTPS authentica-

tion from the user’s point of view.

Essentially, the problem with front-end authentication is

caused by Bob not knowing that Carol is actually delegated

to serve web content on Alice’s behalf. In fact, this problem

can be regarded as a case of delegation in a distributed

system, which has been generalized in previous literature [7],

[8]. The key concepts of the proposed solutions are similar:

a delegation token that explicitly expresses the path of

delegation. However, the standard HTTPS cannot express

such delegation token directly. Therefore, extra effort, as

shown in Figure 1c, is needed to overcome this problem.

Previous researches have also suggested several security

considerations in designing a delegation token scheme under

various threat models. We summarize some of the sugges-

tions that fit our case into the following three requirements:

1) A delegation token must be unforgeable. This is an

essential requirement to counter active impersonation

attacks. Only if a delegation token is verifiable and

tamper-proof can a destination (in our case, Bob the

browser) trust it in the process of authentication.

2) Delegator should be able to issue and revoke

the delegation token independently and efficiently.

The requirement of delegation revocation is also es-

sential. Without guarantee of revocation, an attacker

will still be able to perform impersonation attacks

by intercepting and replaying stale delegation tokens.

The requirement of delegation issuance comes from

operational efficiency.

3) A delegation token should include complete iden-

tification of delegator. As we shall further discuss

in Section IV, this requirement is also necessary to

preserve the functionality of HTTPS certificate in

displaying proper security indicator.

In the following sections, we shall use the above require-

ments to examine the defects of existing mechanisms, also

to serve as guidelines for exploring new solutions.

IV. THE STATUS QUO

In this section, we investigate how the potential problems

discussed above emerge in current practice. At first, we look

up the problems of the front-end authentication, which we

regard as the most challenging part of composing HTTPS

with CDN; then we turn to the back-end.

A. The Front-end

For the front-end authentication, the potential conflict

between HTTPS and CDN is that HTTPS does end-to-

end authentication between a user and a web site, while

the interaction of CDN involves three parties: the user is

redirected from the original web site to a surrogate server of

CDN through one kind of request routing mechanisms. Thus,

whether the problem occurs is determined by the request

routing mechanisms. Recall that there are three common

request routing mechanisms: URL rewriting, CNAME and

domain hosting. Below we analyze each case under the

scenario described in Figure 1:

• HTTPS with URL Rewriting. HTTPS works well

in the URL rewriting case, because the domain

name in a URL, serving as an identity, plays a

key role in server authentication. If Alice modi-

fies a URL, say https://alice.com/foo.png,

to https://alice.carol.com/foo.png, it is

analogous to an explicit message telling Bob that

foo.png will be served by Carol, thus Bob will be

happy with Carol’s certificate.

• HTTPS with CNAME. HTTPS cannot work di-

rectly with CNAME based request routing. Be-

cause the redirection happens in DNS resolution,

which is not recognized by browsers. In Figure 1,

if Bob accesses https://alice.com/foo.png,

and the domain name alice.com is CNAME-ed

to alice.carol.com, Bob is reluctant to accept

Carol’s certificate since the domain name in Carol’s cer-

tificate, say carol.com, does not match the original

one alice.com, and he does not know the underlying

CNAME process.

• HTTPS with Domain Hosting. Similar to the CNAME

case, HTTPS also fails to work directly with domain

hosting based request routing.

In summary, certificate name mismatch could occur when

a web site enables HTTPS and uses a CDN with DNS

based request routing, because the redirection in DNS is
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Table I
SURVEY OF HTTPS SUPPORT BY CDN PROVIDERS

CDN Provider Request-Routing Mechanism HTTPS Support

Akamai CNAME / Domain Hosting Custom
Azure CNAME Not Support

Bitgravity CNAME Custom
Cachefly CNAME Custom

CDNetworks CNAME Custom / Shared
CDN77 CNAME Custom
CDN.net CNAME Custom / Shared

Chinacache CNAME Custom
Chinanetcenter CNAME Custom / Shared

CloudFlare CNAME / Domain Hosting Custom / Shared
CloudFront CNAME Custom
Edgecast CNAME Custom / Shared

Fastly CNAME Custom / Shared
Highwinds CNAME Custom
Incapsula CNAME Custom / Shared
Internap CNAME Custom
KeyCDN CNAME Custom / Shared
Limelight CNAME Custom / Shared
NetDNA CNAME Custom / Shared
Squixa CNAME Custom / Shared

transparent in the authentication of HTTPS. As we have

introduced in Section II, DNS based request routing has

various advantages compared with URL rewriting; and it

is indeed pervasive in practice. Therefore we believe this

problem must be addressed for CDN providers to support

HTTPS.

1) Survey:

By simply searching online, we find this problem has

indeed raised many discussions. We also find that while

some CDN providers, for example, Microsoft’s Azure CDN,

do not support HTTPS with DNS based request routing,

many others do have this feature. For example, Amazon’s

CloudFront announced to support HTTPS with CNAME in

June 2013. This preliminary information motivates us to

conduct a survey to understand the current practice before

considering possible solutions.

Methodology. We first aim to understand whether major

CDN providers support HTTPS with CNAME or domain

hosting, and if so, how they achieve this feature. We empiri-

cally investigate 20 well-known CDN providers (see Table I)

by reading their technical specifications and contacting their

customer services.

Our second goal is to learn the deployment status of

HTTPS with DNS based request routing. For this purpose,

we first probe domain names in Alexa’s top 1 million sites.

If a domain has a CNAME or NS names chaining to one of

the CDN providers in Table I, we consider it a site deploying

CDN by DNS based request routing, which we refer to as

a DNS-CDN-enabled site. For each DNS-CDN-enabled site,

we then access it with HTTPS and record the response.

Results. Table I shows the results of surveying HTTPS

support in CDN providers, from which we see that 19 out of

20 investigated CDN providers support HTTPS with DNS

Table II
HTTPS STATUS OF DNS-CDN-ENABLED SITES

HTTPS Status # of web sites %

Valid Cert
Custom Cert 2152 20.1%
Shared Cert 1198 11.1%

Invalid Cert
Status 200 1637 15.3%

Others 5734 53.5%

Total 10,721 100%

based request routing (mostly CNAME). They develop two

techniques called “Custom Certificate” and “Shared Certifi-

cate” to achieve this feature. We analyze these techniques

in detail later.

Table II presents the statistics of HTTPS status of

DNS-CDN-enabled sites. In total, we observed 10,721 out

of 14,199 DNS-CDN-enabled sites were reachable with

HTTPS. 31.2% of all HTTPS reachable sites showed valid

certificates. Among those sites, 64.2% (20.1% of all HTTPS

reachable sites) used custom certificates; the rest used shared

certificates. 68.8% of all HTTPS reachable sites showed in-

valid certificate warnings, among which only 22.2% (15.3%

of all HTTPS reachable sites) ended up showing valid web

pages (HTTP status code 200), others were either redirected

back to HTTP (30x), or responded with errors (40x or 50x).

This survey is not comprehensive, however, we believe it

is adequate to demonstrate how HTTPS has been deployed

with DNS based request routing mechanisms of CDN cur-

rently. In particular, we observed 1,637 DNS-CDN-enabled

sites accessible over HTTPS (reachable and responded with

valid content), yet disturbed by invalid certificate warn-

ings. Such cases might be caused by HTTPS-enabled web

sites adopting ordinary deployments of CDN providers that

support HTTPS problematically and result in the front-end

authentication failure described in Section III.

2) Analysis of the Existent Mechanisms:

We learn from the survey that CDN providers have

adopted so-called custom certificates and shared certificates

to avoid the front-end authentication failure. However, our

further study shows that both of these two techniques have

their inherent shortcomings.

It is worth to note that the terms used by CDN providers

are inconsistent and confusing; same term might even have

different meanings. Nevertheless, we adopt these two com-

monly used terms consistently in this paper, as described

below.

Custom Certificate:

As shown in Figure 2, custom certificates work by having

the CDN (Carol) requesting web site (Alice) to upload

her certificate and private key. In this case, Alice issues

delegation by explicitly copying her private key to Carol,

then Carol simply announces the delegation by the fact that

she holds Alice’s private key which is used to establish

HTTPS with Bob on Alice’s behalf.
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Figure 2. An illustration of custom certificate in CDN.

Shortcomings. While this approach does avoid warning

of invalid certificate on browser side, we argue that it has

two major shortcomings.

First, sharing private keys between a web site and CDN

provider violates the fundamental setting of public key

cryptography; practically it incurs additional security risks

as the private key needs to be distributed to a number

of surrogate servers, greatly increasing the attack surface.

The fact that Alice deploys Carol’s CDN service implies

she trusts Carol to serve her web content honestly, rather

than trusts Carol to protect her private key from being

compromised. In general, we argue that a technical scheme

should not rely on sharing private key between different

organizations in any circumstance. After all, a private key

is meant to be private.

In addition, a web site cannot revoke its delegation inde-

pendently and efficiently. In Figure 2, since the delegation

from Alice to Carol is issued by copying Alice’s certificate

and private key, to revoke it, Alice must request her CA

to revoke the certificate. This might still be controllable by

Alice, but not efficient. Further, Alice might still need her

CA to sign a new certificate if she wants to keep using

HTTPS, which should be true in most cases. The whole

process of revocation could be highly expensive and time-

consuming, especially when Alice holds an EV certificate,

which requires a rigorous vetting process by her CA.

Shared Certificate:

Shared certificates avoid warning of invalid certifi-

cate on browser side by taking advantage of the SAN

extension of X.509v3 certificates. In Figure 3, when

adopting Carol’s CDN service, Alice issues delegation

by allowing Carol’s CA to issue Carol a new certificate

(“CN:carol.com”) that includes Alice’s domain in its

Figure 3. An illustration of shared certificate in CDN.

SAN extension (“SAN:alice.com”). Carol then uses the

new certificate to communicate with Bob when Bob accesses

alice.com yet is redirected to Carol through DNS based

request routing.

Shortcomings. Although shared certificate could avoid

the problem of sharing private key in custom certificate, it

has its own problems. We consider its two major shortcom-

ings as follows.

First, shared certificate could weaken the functionality of

certificates as a security indicator. In Figure 3, suppose Alice

has an EV certificate while Carol has an OV one, the user

behind Bob (browser) would not be able to realize Alice

is a highly assured web site. Because Bob could only see

Carol’s OV certificate which displays an ordinary HTTPS

indicator, but would never know Alice’s EV certificate that

shows a more noticeable security indicator. This limitation

can be reviewed under the frame of the three requirements

proposed in Section III. As a delegation token, Carol’s

shared certificate does not satisfy the third requirement in

that it only contains Alice’s domain name rather than her

complete identification, i.e. full information of Alice’s cer-

tificate, which is required for displaying a correct indicator

when showing user Alice’s domain and web content.

Second, similar to custom certificate, a web site cannot

issue and revoke its delegation independently and efficiently.

In Figure 3, issuing delegation involves coordination of three

parties: Alice, Carol and Carol’s CA. Revoking delegation

also involves these three parties and could be even uncon-

trollable: Alice might fail to revoke the certificate without

Carol’s agreement because it is actually issued by Carol’s

CA; however Carol may be disinterested in coordinating

revocation because Alice is no longer her customer.

Case Study. We conducted a case study to further observe
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Figure 4. The number of shared certificates which are deprecated by CDN
providers but not revoked by CAs.

how CDN providers operate shared certificates in practice.

We first set up a web site with HTTPS enabled, then re-

quested Incapsula, a CDN provider whose CA is GlobalSign,

to serve our web site using HTTPS. After about half an

hour we received an email from GlobalSign asking for

permission to add our domain name into Incapsula’s cer-

tificate. GlobalSign also depended on this step to verify our

ownership of the domain name, since the email was received

from the email account registered in the SOA record of our

domain name. After replying with our permission, Incapsula

deployed the new shared certificate into its surrogates in

a few minutes, then our web site became accessible from

Incapsula.

We then canceled Incapsula’s service to observe the

process of revocation. We observed that Incapsula deployed

a new certificate on all of its surrogates in an hour, which

excluded our domain from its SANs. However, we found

that the abandoned shared certificate with our domain name

as an SAN was not revoked by GlobalSign either through

CRLs or its OCSP server even a month after we canceled

Incapsula’s service. We also tried to contact the customer

service of GlobalSign several times for this issue, without

success.

The case study shows that the process of issuing a new

shared certificate is generally efficient with the help of some

application layer utilities. However, the process of revocation

is problematic. In our case study, Incapsula and GlobalSign

seem to totally ignore the revocation of abandoned shared

certificates, which exposes risk of impersonation: if the CDN

provider is dishonest or some attackers manage to steal an

abandoned shared certificate and the associated private key,

they can launch a man-in-the-middle attack against any of

the original web sites sharing that certificate.

Monitoring of Shared Certificates. We also launched

a measurement to monitor the issuance and revocation of

shared certificates. We monitored 1,198 sites that used

shared certificates (Table II) to observe how frequently

CDNs updated shared certificates on their surrogates. We

also periodically requested the CRLs and the OCSP servers

to check if the abandoned certificates were revoked by

Table III
THE DEPLOYMENT OF BACK-END AUTHENTICATION IN CDN

PROVIDERS (TESTED IN NOV. 2013)

CDN Provider Back-end Protocol Certificate Validation

CDN77 HTTP –
CDN.net HTTP –

CloudFlare HTTP / HTTPS No 3

CloudFront HTTP / HTTPS Did not validate CN
Incapsula HTTP / HTTPS No

their CAs in a timely manner. Our measurement lasted for

three months, during which we observed 1,865 updates for

shared certificates, mainly resulted from customers joining

or leaving CDN services; Figure 4 shows the number

of updates for shared certificates observed from various

CDNs. However, our measurement showed that none of the

abandoned shared certificates were revoked by their CAs.

This demonstrates that ignorance about revoking shared

certificates is a common problem in current operations of

CDNs and CAs.

B. The Back-end

For protecting the back-end communication of CDN, as

we state before, a standard HTTPS channel with server-

side authentication is sufficient. This is not challenging from

technical perspective, however, our investigation shows that

the current practice is worrisome.

We manually tested five CDN providers that claim to

support HTTPS communication. As presented in Table III,

all of them were insecure. CDN77 and CDN.net did not

even use HTTPS for back-end communication. CloudFlare

and Incapsula did reach our site with HTTPS, but they did

not seem to enable certificate authentication to web site’s

server as they failed to detect our MITM attacks using a

self-signed certificate between CDN and our site. Although

CloudFront verified whether the certificate presented by our

site was signed by a trusted CA, it neglected to match the CN

field with the domain name; thus we successfully launched

a MITM attack using a CA-issued certificate.

As a surrogate of a (pull-based) CDN is essentially a

reverse proxy with caching, and indeed some reverse proxy

softwares have been recommended as open source CDN

solutions, we therefore also look into these well-known

open source reverse proxies. Surprisingly, several famous

reverse proxies, such as Nginx, HAProxy and Varnish, do

not support HTTPS as a back-end protocol.

Although our investigation on the back-end protocol of

CDNs stops at a small scale, due to the limitation of

resources, we believe the results are sufficient to demon-

strate that although the back-end communication of CDN

is technically easy to secure, it is actually problematic in

the current practice and should be paid attention to by CDN

providers.

3CloudFlare fixed the problem in Feb. 2014.
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Reporting and Responses. CloudFlare enabled a feature

called StrictSSL to support back-end certificate validation in

Feb. 2014[9], after we reported the problem. They have also

implemented back-end HTTPS and certificate validation for

Nginx.

C. Summary

We have shown various defects of the current practice of

composing HTTPS with CDN, some of which lead to risks

of impersonation attacks. For the back-end, the problem is

due to lack of awareness, which is fixable with operational

efforts. However, for the front-end, the defects are mostly

inherent. We therefore believe it is necessary to explore new

techniques for the front-end authentication problem.

V. NAME CONSTRAINT CERTIFICATE: A QUESTIONABLE

SOLUTION

In seeking new directions to address the problem of the

front-end authentication, we first look at techniques within

the current frame of the X.509 system. We recognize that a

special extension of the X.509 certificate, namely the name

constraints extension, is potentially applicable to address

the problem. However, we further realize that its practical

feasibility is questionable after detailed investigations.

A. Basic Idea

Back to the custom certificate scenario illustrated in

Figure 2, if Alice can issue a new certificate with all

necessary information to Carol, instead of giving her own

certificate, our major concern of sharing private key can

be avoided. In fact, in the X.509 system, Alice’s CA

could issue Alice a signing certificate (a certificate with

“BasicConstraints=CA:True”), so that Alice be-

comes an intermediate CA who can issue new certificates

to Carol. The problem is that simply doing so allows Alice

to sign valid certificates for any domain to anyone, which

raises serious security concerns. X.509 system has addressed

this issue by a special certificate extension called name

constraints [3]. Essentially, the name constraints extension

restricts a signing certificate only being able to issue certifi-

cates with a certain space of identities.

Conceptually it is straightforward to apply these features

of the X.509 system to solve this problem. As shown in

Figure 5, Alice first needs to apply for a subordinate CA

certificate with name space being restricted to alice.com.

When she adopts Carol’s CDN service, she issues a new

certificate to Carol stating that alice.com has been del-

egated to Carol, which is further shown to Bob as proof

of delegation when Bob tries to access alice.com yet

connects to Carol. Alice can also revoke the delegation

independently with standard certificate revocation techniques

such as CRL and OCSP.

Figure 5. Leveraging name constraint certificate to support HTTPS in
CDN.

B. Discussions on Impracticality

This approach is seemingly attractive as it fulfills all

requirements of this case based on existent standards. How-

ever, we doubt its practical feasibility after careful investi-

gations and considerations.

1) Improper Enforcement:

This approach works only if browsers and other client

softwares correctly enforce the name constraints of a signing

certificate, otherwise it could undermine the trust model of

the X.509 PKI. However, our investigation reveals pitfalls

in the specifications and implementations of the name con-

straints extension, as presented below.

Name Structure of the X.509 Certificate. The entire

identity of an X.509 certificate consists of the “Distinguished

Name (DN)” which is one field of its “Subject”, and all

names in its SAN extension if such an extension is presented.

The “DN” field is further composed by a number of

attributes such as “Common Name (CN)”, “Organization

(O)”, “Country (C)”. The SAN extension could be filled

with one or more names with various types, including email

address, DNS name, IP address, directory name and uniform

resource identifier.

The Name Constraints Extension. The name constraints

extension in a signing certificate of an intermediate CA

describes one or more rules that restrict the name space

of certificates issued by the CA. Different components of

certificate identity have different name constraint syntax

and matching rules. For example, a certificate with DN

“C=Internet,O=FTP” does not match a DN constraint

“C=Internet,O=WWW” since the former does not con-
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tain the latter. As another example, a DNS name con-

straint “example.com” only matches sub domains of

“example.com”. A name constraint can further be speci-

fied as permitted or excluded. For a responsible intermediate

CA, a certificate request is permitted to be signed only if all

names in its identity do not match the excluded constraints

and match the permitted ones.

Pitfalls in Current Practice. In a certificate used for

web, the only meaningful parts of its identity are the domain

names, which are either presented as CN attributes of the DN

field, or presented as DNS names in the SAN extension.

On validating the name of a certificate, following the

standard [10], a browser first checks the SAN extension if it

is present. If the domain name of the current URL appears in

the SAN extension, the validation succeeds. Without seeing

a SAN extension, the browser further checks whether the

domain name is present in the DN field as a CN attribute.

Considering the name constraints extension, the browser

should further check whether the identity of the certificate

passes the name constraint rules. However, we find that not

all the browsers have implemented this feature. As shown in

Table IV(a), on MAC OS, all investigated browsers except

FireFox do not implement name constraints checking. This

is because Security Framework API, the TLS/SSL library

on MAC OS does not support this feature while the NSS

library used by FireFox does.

In fact, when applying to web, the standard name con-

straints checking is not secure. A dishonest intermediate

CA, who is restricted by a name constraints extension,

still can issue certificates with arbitrary domains, and fool

browsers to accept. The reason is that in a certificate used

for web, the domain name can be presented in the DN field

as a CN attribute. However, DN field is only examined

by DN constraints according to [3], which only checks

if the former literally contains the latter. In other words,

even if a CN has a value in the form of domain name,

it would not be checked against a DNS name constraint

at all. Such examination cannot prevent arbitrary domains

from being included in additional CN attributes. For ex-

ample, if a CA, who is restricted by a DN constraint

“C=Internet,O=WWW,CN=example.com” and a DNS

name constraint “example.com”, issues a certificate with

a DN “C=Internet, O=WWW, CN=example.com,

CN=google.com” but without SAN extension, the cer-

tificate will be accepted as valid for google.com by a

browser who merely follows the standard. Because the DN

field is legitimate to the DN constraint; moreover, the DNS

name constraint will not be examined since there is no SAN

extension.

To prevent this problem, a browser should apply DNS

name constraint matching rule on CN attributes as well,

which is beyond the standard. We found this issue has been

briefly discussed in IETF mailing list [11]. Our investigation

reveals that Chrome and Opera on Linux still fail to do

Table IV
THE IMPLEMENTATIONS OF NAME CONSTRAINTS CHECKING IN

VARIOUS BROWSERS.

Operating Browsers
System IE Firefox Chrome Safari Opera

Windows � � � � �

Mac OS N/A � × × ×
Linux N/A � � N/A �

(a) Support of distinguished name constraints on the Subject field
and DNS name constraints on the SAN extension.

Operating Browsers
System IE Firefox Chrome Safari Opera

Windows � � � � �

Mac OS N/A � × × ×
Linux N/A � × N/A ×

(b) Support of DNS name constraints on the common name
attribute.

so (see Table IV(b)), which means their name constraints

checking can be bypassed by the above trick.

2) High Operational Overhead:

Even assuming perfect enforcement, a large majority of

web sites probably could not afford, nor have the technical

capability, to become subordinate CAs. It is complicated

and costly to operate a CA, due to the extensive security

requirements on certificate issuance imposed by standard

and industrial bodies such as ESTI [12] and CA/Browser

Forum [13]. To meet those requirements, significant invest-

ment and technical skills are required in CA’s infrastructure

and operation.

3) Lack of Incentive:

Even if all web sites could afford becoming CAs, current

root CAs (or their subordinates) are unlikely motivated to

issue them intermediate CA certificates due to high overhead

from vetting of future subordinate CAs (such as auditing

their security and policy conformance). This vetting process

is commonly mandated by browser vendors [14], in order

for a root CA’s public key certificate to be included as trust

anchor in their browsers.

4) Evidence of Rare Adoption:

We searched through the ICSI Notary certificate

database [15], which had collected about 1.5 million HTTPS

certificates in the Internet, but found that none of these

certificates contained a name constraint extension. This evi-

dence demonstrates that although name constraint certificate

is an existent technique in standard, it is rarely, if ever,

adopted in practice.

5) Summary:

Based on the above discussion, we do not believe

that name constraint certificates could become a practical

solution to the front-end communication problem in HTTPS

over CDN.
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VI. DANE WITH DELEGATION SEMANTICS: A LONG

TERM SOLUTION

In this section, we propose a new solution for the front-

end authentication problem. The approach is based on a

slight extension of DANE [16], a protocol currently being

standardized by the IETF. Although this approach is not

immediately deployable because of its dependencies on

DANE and DNSSEC, we believe it has potential as a long

term solution, once DANE becomes a common practice.

A. Overview of DANE

The purpose of DANE is to provide an alternative or

complementary trust model of TLS/SSL to address some

weaknesses of existent mechanisms. Regarding HTTPS, the

X.509 PKI based trust model has two main weaknesses.

First, the trust is all or nothing: there is no practical way

to prevent any trusted CA from issuing a valid certificate

for any domain. Hence any compromised or dishonest CA

could threaten the whole Internet. Second, X.509 PKI cannot

verify self-signed certificates. This prevents free and ubiq-

uitous deployment of HTTPS without commercial CAs.

DANE mitigates these two weaknesses by providing a

way to securely bind a domain name and a certificate. The

binding is implemented by adding the certificate as one

of the domain’s DNS records named TLSA records, which

is further secured by DNSSEC. The binding enhances the

original authentication of HTTPS in web, in that it gives

a web site the ability to pin its certificate. Based on this

information, a browser is able to reject a mechanically

valid yet impersonating certificate, or accept a self-signed

certificate. Specifically, DANE defines four use cases [4]:

• CA Constraints. The CA constraints case refers to a

web site adding its CA’s certificate as its TLSA record,

which prevents browsers from accepting certificates

issued by unauthorized CAs.

• Service Certificate Constraints. The service certificate

constraints case is much stricter than the CA constraints

case in terms of certificate pinning. In this case, a

certificate can be trusted only if it passes the X.509

PKI validation and is presented as a TLSA record.

• Trust Anchor Assertion. This case is similar to the

CA constraints case, except that a web site can choose

an unofficial CA, i.e. the CA’s certificate can be out of

the commercial CAs of the X.509 PKI.

• Domain-Issued Certificate. This case is similar to

the service certificate constraints case, except that the

certificate presented in TLSA records can be self-

signed.

Adopting DANE requires the deployment of DNSSEC, as

well as change of certificate validation process on TLS/SSL

clients; both of them need tremendous efforts. Neverthe-

less, DNSSEC and DANE have been well recognized as

substantial steps to make the whole Internet more secure;

Figure 6. Extending DANE to support HTTPS in CDN.

the community is making great efforts to promote the

deployment of these two techniques.

B. Basic Idea

Actually, some use cases of DANE can be directly ap-

plied on the front-end authentication problem. By utilizing

DANE, Alice can bind Carol’s certificate with her domain

name, which could help Bob to recognize the delegation

relationship between Alice and Carol. However, we do not

consider this as an acceptable solution. Our major concern is

that, similar to shared certificate, Bob cannot obtain Alice’s

original certificate, thus not be able to display proper security

indicator to users.

We observe that a simple extension of DANE can over-

come the above drawback. As illustrated in Figure 6, to issue

a delegation, Alice adds both of her certificate and Carol’s

certificate as her TLSA records. When Bob connects to Carol

and receives her certificate, he further issues a DNS query to

request Alice’s TLSA records. After receiving the response,

Bob not only recognize the delegation from Alice to Carol by

seeing Carol’s certificate appear as Alice’s TLSA record, but

is also able to obtain Alice’s certificate which is presented

in the response as well.

In essence, our proposal broadens the semantics of DANE

by not only binding a name with a certificate, but also

expressing delegation relationship between entities.

C. Analysis

Deployability. Assuming DANE has been well supported,

we believe this approach is quite acceptable from the prac-

titioners’ perspective. First, this approach merely needs to

extend the semantics of a few bytes in the current TLSA
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data format (we omit the details for clarity); in terms of

implementation, it only needs to slightly modify the vali-

dation process on client side compared to DANE. Second,

the operations of delegation issuance and revocation are also

convenient and efficient: Alice only needs to add or remove

Carol’s certificate from her TLSA records, which is simple

and fully controllable by herself.

Security. In this approach, the unforgeability of delegation

token, i.e. the TLSA records of Alice, is guaranteed by

DNSSEC. Alice does not need to share her certificate’s

private key with Carol. And as the revocation of delegation

is fully controlled by Alice, there are also no risks of imper-

sonation attacks caused by insufficient revocation. Further,

since the delegation token contains Alice’s certificate, Bob

is able to show user a correct security indicator.

One potential risk is replay attack: suppose Alice changes

her CDN provider and removes Carol’s certificate from her

TLSA records, replaying the stale TLSA records could still

convince Bob to believe Carol is a valid delegatee from

Alice. Since this problem is inherent in DNSSEC and could

be mitigated by expiration time in DNSSEC signatures, we

believe it is acceptable in practice.

It is worth mentioning that the authentication of this

approach is different from that of the original authentication

of HTTPS in terms of source of trust. In the former case,

the trust comes from Alice’s DNSSEC key which signs the

delegation token, while in the latter case, the trust comes

from the private key of Alice’s certificate. Although this

difference is conceptually fundamental in the sense that

Alice now needs to protect two keys rather than one to

prevent key-compromised impersonation attacks, we argue

that the actual impact is insignificant. First, both of the

certificate key and the DNSSEC key are highly critical and

they must be carefully protected. Moreover, this difference

is actually inherent in DANE. In the frame of DANE, to

some degree, the DNSSEC key is even more important than

the certificate key. Because once the private key of DNSSEC

is compromised, the attacker could claim any other “valid”

certificate from DANE to bypass the protection of original

certificate validation. Therefore we believe the increased risk

of protecting both of the certificate key and the DNSSEC

key is tolerable from a practical perspective.

D. Implementation

We have implemented a proof of concept (PoC) of our

proposal as a FireFox extension4, which is a slight revision

of another Firefox extension demonstrating DANE [17].

We modify the DANE Firefox extension to allow for the

validation of the delegation path among the certificates

returned from the web channel (HTTPS) and those from the

DNS channel (DANE). Figure 7 illustrates how a browser

with our extension interacts with a CDN provider and the

4Our PoC and the demo site are available at https://github.com/cdnsec.

Figure 7. The interaction of proposed approach for the front-end
authentication that composes HTTPS with CDN.

original web site. Compared to the standard web browsing,

it adds an extra network round-trip to fetch TLSA records

as well as a local validation process. It also changes how

a browser displays security indicator to users. Note that the

extra round trip of the DNS lookup for TLSA records can

be avoided if we had chosen to modify the browser to do

either TLSA query in parallel with the A query or DNS

prefetching.

With our PoC, we can now demonstrate the two main

properties of our proposal: 1) a web site using CDN service

can provide seamless HTTPS experience to end-users and

show its certificate to them; and 2) a web site can effectively

and independently revoke its HTTPS delegation to a CDN

provider without requiring any cooperation from the CDN

provider or the CA. We first setup a web site supporting

DANE, and obtained a certificate from a CA. We then

applied for a CDN service for our web site, and added the

certificates of our CDN provider and our own to our TLSA

records. Note that we neither upload our certificate to our

CDN provider, nor apply for the use of a shared certificate

provided by the CDN provider. Without our PoC, a user

visiting our web site via CDN will be alerted of invalid

certificate. With our PoC, a user is not given any warning

of certificate errors. Further, the user can click our modified

Firefox indicator to obtain information about our original

certificate and the delegation path. We then removed the

CDN providers certificate from our TLSA records to revoke

the delegation. After that, when users access our web site via

this CDN provider, they will be alerted of certificate errors.

E. Discussions on Potential Overhead

Without considering the local process changes, compared

to the standard web browsing, the overhead of the proposed
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Figure 8. Comparison of the size of collected single certificates and
certificate chains.

approach is mainly the potential latency brought by the extra

DNS round-trip. However, as we state before, the potential

latency is highly related to various implementation strate-

gies, which makes a comprehensive evaluation a difficult

work. Therefore we consider a direct latency measurement

as future work. Here instead of comparing with the standard

web browsing, we narrow our discussions on the difference

between our proposal and DANE.

Although our proposal does not use more network round-

trips than DANE, the DNS conversation in our proposal is

still heavier than the original DANE because web site needs

to transmit more certificates in a DNS reply. More specifi-

cally, in our proposal, to help Bob validate Alice’s certificate

without other efforts, the DNS conversation should bring

back the whole certificate chain of Alice. To explore the

possible overhead of transmitting a complete chain rather

than a single certificate in a DNS conversation, we collect

available certificate chains when conducting the measure-

ments in section IV-A1. Figure 8 plots the CDF of the

sizes of collected certificate chains, along with the CDF of

the sizes of single certificates. The most useful information

in Figure 8 is that 97.86% of all certificate chains exceed

4,096 bytes, while in single certificates the ratio is 11.68%.

This means that in most cases, the DNS conversation in

our proposal will first try UDP then turn to TCP because

the response exceeds the maximum length of 4,096 bytes

allowed by UDP currently, which will cause more network

latencies.

To mitigate this issue, we recommend OS vendors as well

as browser vendors to support issuing DNS query over TCP

directly. We believe this could be a common requirement

in the DNSSEC era. After all, even if not considering our

proposal, a considerable portion of DNS conversations in

DANE could still face the first-UDP-then-TCP issue as our

data in Figure 8 shows that 11.68% of single certificates

have already exceeded the 4,096 byte limitation.

F. Summary and Future Work

Our proposal is lightweight in itself, and is incremen-

tally deployable. For example, a web site can immediately

improve its security by publishing its delegation token

in DNSSEC and encouraging visitors to use our browser

plugin. While our proposal cannot be deployed immediately

on a large scale due to its dependence on DNSSEC and

DANE, we believe it is a valuable long term solution,

since both DNSSEC and DANE have attracted significant

interest and deployment effort from the Internet community.

In fact, our proposal is another example of how DNSSEC

and its applications such as DANE can help bootstrap trust

in Internet services.

Another note is that recently due to the needs of cooper-

ations between CDNs and ISPs, industry vendors have pro-

posed cascading CDN service [18], [19], i.e. more delegation

layers between multiple CDN providers. Our solution can

be easily extended to support this scenario, e.g. using more

DNS queries to follow the possible certificate delegation

path step by step. We leave this for future work.

VII. DISCUSSIONS

Other Possible Solutions and Comparisons. We are

aware of a few other techniques that are possibly applicable

to compose HTTPS with CDN.

Proxy certificate [20] is conceptually similar to the name

constraint certificate therefore has similar practical issues.

WASP [21] turns TLS/SSL handshake into a three-party

protocol. In WASP, CDN relays TLS/SSL authentication

to web site and then receives TLS/SSL master secret to

accomplish session key negotiation with browser, so that

it is able for the browser to show the certificate of the web

site meanwhile avoids sharing private key. Comparing with

our DANE-based solution, WASP does not require client-

side changes, which makes it relatively easy to deploy and

probably favored by the industry. However, WASP still needs

heavy change on server-side. Further, WASP could greatly

weaken the performance improvement and DDoS protection

of adopting CDN as it requires web site to be involved

in every HTTPS connection. In addition, it is unclear how

WASP could be extended to support cascading CDN service.

Tight Coupling of HTTPS. From an architectural per-

spective, to some extent, the front-end authentication prob-

lem is caused by the tight coupling of HTTPS. In HTTPS,

the authentications of the transport layer protocol (TLS) and

the application-layer protocol (HTTP) are tightly coupled in

that they share same identity (certificate) and same validation

process of the identity. This is why CDN, which essentially

is a transport layer man-in-the-middle, breaks the application

layer authentication, instead of being transparent to upper

layers. From this point of view, although the proposed

DANE-based approach does not completely decouple the
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application layer authentication from the transport layer

authentication as they still share same identity, it does loosen

the coupling in that it provides a different identity validation

process for application layer authentication.

Boundary of Trust. We have revealed various practical

defects of the current HTTPS practice of CDN providers.

These defects also reflect a fundamental, yet often misun-

derstood security concept: the boundary of trust. In this case,

the misunderstood trust boundaries behind some defects

might be simply caused by technical unawareness. The

insecure back-end communication is such an example, as

everyone will agree that the network between such ”back-

end” communication is apparently untrusted. However, the

trust boundaries behind some others are more subtle: we

have trusted a CDN to deliver our content, shall we trust

it not to abuse our identities or private keys, without (or

with) guarantee of revocation? For a theoretical problem,

the answer for such question should apparently be no.

However, in a practical scenario like this one, it is often

unclear. Nevertheless, we believe we should be conservative

in considering the trust boundaries of our Internet systems,

especially in the current context of the pervasive state-level

Internet surveillance, demonstrated by the recent events of

NSA leaks from Edward Snowden.

VIII. RELATED WORK

Delegation and Multi-party Web Protocols. The most

challenging problem studied in this paper is a special

case of delegated authentication. The generalized frame of

delegation has been recognized by Sollins [7], referred to

as cascaded authentication. Gasser and McDermott further

give a detailed study on delegation in a distributed system

under the context of access control; they also first considered

the revocation of delegation. Except the case of composing

HTTPS with CDN, several multiple party web protocols can

also be regarded as delegation protocols. For example, in the

scenario of the OAuth [22] protocol, a user (resource owner)

delegates a web server (consumer) to access his resources on

another web server (service provider). In fact, if we broaden

the concept of delegation, many multiple party protocols in

web can be viewed in this way. To some degree, the process

of Single Sign On (SSO) is also a process of delegation.

In the SSO protocols such as CAS [23], SAML [24], and

OpenID [25], a service provider (SP) delegates an identity

provider (IdP) to authenticate a user. In e-commerce system,

the process of Cashier-as-a-Service [26] based checkout is

also a form of delegation in that an online merchant (e.g. ,

Amazon) delegates an online cashier (e.g. , Paypal) to charge

its users. Protocols involving multiple parties are much more

complicated than two party protocols. The point of view of

delegation is useful in clarifying the relationships of involved

parties from the complex protocol interactions.

Server Authentication on the Web. This paper studies

a case of authentication, in which we explore how to avoid

improper security indicator of HTTPS in presence of CDN.

The main purpose of HTTPS certificate warning and other

HTTPS security indicators are to help users identify MITM

attack or fake sites, i.e. phishing sites. Countering phishing

sites is a rather complicated issue because indeed the victim

in phishing attacks is human rather than machine [27] [28].

While some studies have showed that the current security

indicators of HTTPS are not efficient in preventing phishing

sites for various reasons [29] [30]. Others have tried to re-

design the indicators [30]. In addition to HTTPS, researchers

have invented several authentication schemes to further help

users properly identify web sites. SiteKey [31] is a technique

adopted by BankOfAmerica, which employs a user-specific

icon to enhance server authentication. PwdHash [32] and

BeamAuth [33] prevent users from leaking their credentials

to phishing sites by enhancing the authentication with spe-

cially crafted second factors.

TLS/SSL Trust Model. To some degree, the problem

studied in this paper occurs because the trust model of

HTTPS, i.e. the X.509 PKI system lacks the ability to

express delegation relationship between certificates. Besides

the X.509 PKI system, and the DANE protocol which we

have introduced, some other trust models of TLS/SSL have

been applied. Another common application of TLS, the

secure shell (SSH), adopts a trust model named Trust-on-

first-use [34], which is essentially a historical behavior based

trust. The web-of-trust model [35] is flexible and potentially

able to express the semantics of delegation, however, it is

not being applied with TLS/SSL. Research on TLS/SSL trust

model mainly focuses on the problems of the X.509 system.

Clark et al. give a comprehensive review on this topic [36].

Perspectives [37] and Convergence [38] are two proposals

trying to bring the historical behavior based trust to web.

Certificate Transparency [39] provides an open platform

to monitor and audit TLS/SSL certificates, which helps to

address the weaknesses of the X.509 system. The Chrome

browser implements certificate pinning which associates

HTTPS web sites with a group of expected certificates.

Study of Certificate. Though not our direct motivation,

our study reveals some pitfalls of certificate processing in

various browsers, in the course of which we strongly feel that

certificate is highly complex that could be misunderstood,

and further be misused in many ways. Indeed, this topic has

attracted many efforts in the past few years. A number of

measurements have been conducted to investigate the current

state of TLS/SSL certificates in the Internet [40], [41],

[42], [43], [44], [45]. The certificates are collected either

through scanning the entire IPv4 address space, or probing

the Alexa’s Top 1m sites, or through passively monitoring.

In [41] and [42], the authors show the statistics of the

collected certificates and reveal their existing problems.

Akhawe et al. aim at understanding the TLS/SSL errors

for certificates on the web service and also present some

practical recommendations based on their analysis [43].
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Amann et al. analyze the certificate trust relationships in

SSL ecosystem and expose their surprising dynamics [44].

Delignat-Lavaud et al. try to assess the adoption of the X.509

PKI guidelines in current practice [45].

Certificate revocation is a major concern in our study.

Recently Topalovic et al. point out some problems with

certificate revocation in OCSP and propose to use short-lived

certificates to mitigate the problem of certificate revoca-

tion [46]. Delignat-Lavaud et al. also discover certificate re-

vocation issues for CDN services as we do individually [45].

Other Security Problems Brought by CDN. This paper

studies an authentication problem brought by CDN. In

the model of this paper, web sites trust the CDN to be

honest when their contract is valid. Others might consider

not trusting the CDN. Lesniewski-Laas et al. propose SSL

splitting to protect the integrity of data served by untrusted

proxies [47]. Michalakis et al. investigate the problems of

content integrity in peer-to-peer CDNs, where not all the

replicas are trusted [48]. They also present a system called

Repeat and Compare to ensure the content integrity in

untrusted peer-to-peer CDNs.

IX. CONCLUSION

The authentication problem of composing HTTPS with

CDN is much more complicated than it seems to be. CDNs,

transparent to end-users in most cases, introduce complexity

to the end-to-end communication.

We give a systematic investigation on the current practices

of composing HTTPS with CDN, which includes 20 leading

CDN providers and 10,721 of their customer web sites.

Our study finds that the status quo is far from satisfactory.

Varieties of problems exist in HTTPS deployment of those

popular CDN providers, including widespread use of invalid

certificates, private key sharing, neglected revocation of

stale certificates, insecure back-end communication with

customers’ original web sites and so on, ranging from

operational level to mechanism design level.

In seeking new solutions, we first examine a potential

solution using existent technique called name constraint

certificate. However, we consider it an impractical approach

for various reasons. Then we propose a solution based

on DANE, an emerging technique being standardized by

the IETF. Our implementation shows that the DANE-based

solution could compose HTTPS with CDN securely and

effectively.

We expect our work to raise the awareness of this emerg-

ing problem in the community. In the short term, we expect

the vendors take operational efforts to address some of the

defects of the current practices. In addition, we hope our

work can set off further discussion among practitioners and

researchers on more preferable solutions.
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