TrafficSliver: Fighting Website Fingerprinting Attacks with
Traffic Splitting

Wladimir De la Cadena®
University of Luxembourg
wladimir.delacadena@uni.lu

Jan Pennekamp
RWTH Aachen University
jan.pk@comsys.rwth-aachen.de

Thomas Engel
University of Luxembourg
thomas.engel@uni.lu

ABSTRACT

Website fingerprinting (WFP) aims to infer information about the
content of encrypted and anonymized connections by observing
patterns of data flows based on the size and direction of packets. By
collecting traffic traces at a malicious Tor entry node — one of the
weakest adversaries in the attacker model of Tor — a passive eaves-
dropper can leverage the captured meta-data to reveal the websites
visited by a Tor user. As recently shown, WFP is significantly more
effective and realistic than assumed. Concurrently, former WFP
defenses are either infeasible for deployment in real-world settings
or defend against specific WFP attacks only.

To limit the exposure of Tor users to WFP, we propose novel
lightweight WFP defenses, TrafficSliver, which successfully counter
today’s WFP classifiers with reasonable bandwidth and latency
overheads and, thus, make them attractive candidates for adoption
in Tor. Through user-controlled splitting of traffic over multiple
Tor entry nodes, TrafficSliver limits the data a single entry node
can observe and distorts repeatable traffic patterns exploited by
WEP attacks. We first propose a network-layer defense, in which we
apply the concept of multipathing entirely within the Tor network.
We show that our network-layer defense reduces the accuracy from
more than 98% to less than 16% for all state-of-the-art WFP attacks
without adding any artificial delays or dummy traffic. We further
suggest an elegant client-side application-layer defense, which is
independent of the underlying anonymization network. By sending
single HTTP requests for different web objects over distinct Tor
entry nodes, our application-layer defense reduces the detection
rate of WFP classifiers by almost 50 percentage points. Although it
offers lower protection than our network-layer defense, it provides

*Both are first authors, supervised by Andriy Panchenko. Further details in Appendix C.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’20, November 9-13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7089-9/20/11...$15.00
https://doi.org/10.1145/3372297.3423351

Asya Mitseva®
Brandenburg Technical University
asya.mitseva@b-tu.de

Sebastian Reuter
RWTH Aachen University
reuter@comsys.rwth-aachen.de

Klaus Wehrle
RWTH Aachen University
wehrle@comsys.rwth-aachen.de

Jens Hiller
RWTH Aachen University
hiller@comsys.rwth-aachen.de

Julian Filter
RWTH Aachen University
julian filter@rwth-aachen.de

Andriy Panchenko
Brandenburg Technical University
andriy.panchenko@b-tu.de

a security boost at the cost of a very low implementation overhead
and is fully compatible with today’s Tor network.

CCS CONCEPTS

« Security and privacy — Pseudonymity, anonymity and un-
traceability; « Networks — Network privacy and anonymity.

KEYWORDS

Traffic Analysis; Website Fingerprinting; Privacy; Anonymous Com-
munication; Onion Routing; Web Privacy

ACM Reference Format:

Wladimir De la Cadena, Asya Mitseva, Jens Hiller, Jan Pennekamp, Sebastian
Reuter, Julian Filter, Thomas Engel, Klaus Wehrle, and Andriy Panchenko.
2020. TrafficSliver: Fighting Website Fingerprinting Attacks with Traffic
Splitting. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS °20), November 9-13, 2020, Virtual Event, USA.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3372297.3423351

1 INTRODUCTION

Nowadays, mass surveillance and Internet censorship have become
extremely alarming as billions of people rely on the Internet as
their primary source of information. Several methods for anony-
mous communication have been designed and developed to im-
prove online privacy and enable users to retain control over their
data [24, 46]. The main goals of these tools are to hide the identity
(i.e., IP address) of Internet users, and to prevent third parties from
linking communicating partners. However, as real-world adoption
of such systems requires acceptable performance to handle mod-
ern real-time applications, only a few of these tools have reached
widespread deployment. Currently, Tor [11, 12] is the most popular
anonymization network [40], designed particularly for low-latency
applications, e.g., web browsing. To hide its identity, each Tor user
runs onion proxy (OP) software, and creates a virtual tunnel, circuit,
to its destination through a chain of three volunteer nodes, called
onion relays (ORs). Based on their position in the circuit, the ORs
are known as entry, middle, and exit, and each of these knows its
predecessor and its successor only. The user data is then encrypted
in multiple layers (where each of the ORs can remove only a single
layer of encryption) and encapsulated in chunks of a fixed size,

https://doi.org/10.1145/3372297.3423351
https://doi.org/10.1145/3372297.3423351

called cells. Thus, Tor ensures that none of the ORs in the circuit
knows the user and its destination at the same time [11].

Due to its popularity, Tor has become an attractive target for
attacks. Although Tor promises to hide the relationship between the
user and its communication partner from a local passive observer,
e.g., a malicious entry OR — one of the weakest adversaries in the at-
tacker model of Tor [12] — Tor cannot conceal the number, direction,
and timing of transmitted packets. An attacker can exploit this leak-
age to conduct website fingerprinting (WFP) [5, 19, 34, 44, 47]. WFP
is a special type of traffic analysis attack, which aims to identify the
content (i.e., the visited website) of anonymized user connections
by passively observing patterns of data flows. Over the years, mul-
tiple studies have systematically shown the continuously improved
effectiveness of WFP attacks [19, 34, 44, 47] and their applicability
in real-world settings [42, 45]. In response, a major line of research
has focused on designing defenses against WFP attacks [6, 7, 23, 50].
Nevertheless, none of these has been adopted in Tor due to their
unacceptably high bandwidth and latency overhead [6, 7, 13] or
proven inefficiency against state-of-the-art WFP attacks [26, 44].

The growing number of powerful WFP attacks and the lack of
effective and feasible WFP defenses highlight the need to design
easily-deployable and efficient countermeasures against WFP. In
this paper, we propose two novel lightweight WFP defenses, called
TrafficSliver, which successfully counter today’s WFP classifiers
with reasonable bandwidth and latency overheads and, thus, make
them attractive candidates for adoption in Tor. In contrast to former
WEP defenses that rely mainly on padding and delaying user traffic,
our TrafficSliver defenses are based on user-controlled splitting
of traffic over multiple entry ORs without inserting any artificial
delays or dummy traffic. Our main goals are to limit the data a
single entry node can observe, and to destroy repeatable traffic
patterns exploited by state-of-the-art WFP attacks. We first intro-
duce our network-layer defense, in which we apply the concept
of multipathing entirely within Tor, i.e., the user traffic is sent via
several Tor paths containing distinct entry ORs. We implement our
network-layer defense in the existing Tor software and show its
feasibility and possible incremental deployment in practice. Second,
we suggest our elegant client-side application-layer defense that
works completely independently of the underlying anonymization
network. We demonstrate that it supports two modes of operation
by (i) sending single HTTP requests for different web objects over
distinct Tor entry ORs or (ii) requesting different fractions of a
single web object via different Tor paths. To achieve the latter mode
of operation, we exploit the range option in the HTTP protocol to
create multiple outgoing HT TP requests for a single resource.

Alongside fulfilling the requirements of being easy deployable
and efficient in terms of bandwidth and latency overhead, another
main challenge to be addressed by our defenses is the selection
of an effective traffic-splitting strategy. The latter ensures that a
single malicious entry OR can observe only a limited portion of user
traffic, which is not sufficient to perform WFP. As shown in [25],
a basic splitting scheme, such as round robin, does not provide
an adequate level of security against WFP. Thus, we explore the
resistance of advanced traffic-splitting strategies against WFP.

The contributions of our paper are as follows:

(1) We design two novel lightweight WFP defenses, TrafficSliver,

based on the idea of traffic splitting over multiple entry ORs.

While our network-layer defense realizes the concept of mul-
tipathing entirely within Tor, our application-layer defense
distributes (fragments of) single HT TP requests over several
Tor paths. Both defenses insert neither artificial delays nor
dummy traffic and, thus, are efficient in practice.

We explore several traffic-splitting strategies, which can

serve as candidates for adoption in our defenses. In particu-

lar, we analyze the efficiency of these strategies against mod-
ern WFP attacks by conducting simulative and real-world
evaluations with four state-of-the-art WFP classifiers.

(3) We conduct an extensive analysis to prove the effectiveness
of our TrafficSliver defenses. We show that our network-
layer defense provides better protection than prior WFP
defenses on a state-of-the-art dataset by achieving a classifi-
cation accuracy below 16% while being significantly more
efficient with respect to bandwidth and latency overhead. We
further show that our elegant application-layer defense out-
performs WTF-PAD (the former most favored low-overhead
defense) in terms of the attacker’s performance while dra-
matically reducing implementation overhead.

—~
S
~

2 THREAT MODEL

Despite the encapsulation of user data in cells of equal size, Tor still
cannot conceal meta-data such as number, direction, and timing of
transmitted packets. An adversary can passively exploit this side-
channel leakage and mount website fingerprinting [5, 19, 34, 44, 47].
WEFP usually corresponds to a supervised machine learning (ML)
problem, in which the adversary (1) defines a set of websites to
be detected and (2) collects traces of multiple page loads for each
of them. The adversary (3) analyses the collected traces to extract
possibly expressive patterns, i.e., features, used to create a finger-
print for each website. Then, (4) ML is applied to train a classifier
with the fingerprints in order to create a classification model, i.e.,
a representation that is able to map an unknown fingerprint to
a previously-predefined class of fingerprints. Finally, the adver-
sary (5) uses the generated model to identify the visited website,
corresponding to an unknown trace of a real user.

A WFP attack is typically analyzed in two threat models, closed
and open world. In a closed-world scenario, the user is allowed to
visit a limited set of websites and the attacker has patterns for all
these websites. Although this scenario is not realistic, it is appro-
priate for comparing and analyzing the performance of different
WFP classifiers. The open-world scenario reflects a more realistic
threat model, in which the attacker has fingerprints for websites of
interest only (foreground) and the user can visit an unlimited set of
websites (background). Like related work [19, 44, 47], we assume
that the adversary can detect the start and the end of each page
load and each site in our analysis is represented by its index page.

In this work, we assume the attacker to be a passive observer
that does not decrypt, modify, or interrupt transmitted packets.
The attacker has a limited view of the Tor network by controlling
a restricted number of entry ORs. Thus, he can monitor traffic
exchanged with a Tor user and is aware of the user’s identity, but
does not know which website the user is visiting. Moreover, we
assume that the adversary has sufficient computational power to
train several fingerprinting techniques on large training datasets.

3 RELATED WORK

We briefly review previously proposed WFP attacks and defenses.

WPFP Attacks. In 2011, Panchenko et al. [35] are the first to show
the feasibility of WFP to deanonymize Tor users. They achieve an
accuracy of almost 55% by using a novel set of features based on
volume, time, and direction of transmitted packets and applying a
Support Vector Machine (SVM) classifier. The authors are also the
first to explore the scalability of WFP in an open-world scenario and
achieve a true positive rate (TPR) of up to 73% and a false positive
rate (FPR) of 0.05%. Thus, the work prompted a significant amount
of further research in the field of WFP [8, 13, 48].

In 2014, Wang et al. [47] suggest a new k-Nearest Neighbor
(k-NN) classifier, which achieves an accuracy of 91% (100 pages,
closed world) and a TPR of 85% for a FPR of 0.6% using more than
5,000 background pages in open world. Juarez et al. [22] criticize
several unrealistic assumptions made by previous works and show
the negative impact of multitab browsing, constantly changing
web content, and the use of different Tor Browser [39] versions for
training and testing on the accuracy of WFP attacks. Wang and
Goldberg [49] revisit some of these assumptions and show how the
attacker can efficiently keep the training data up to date.

In 2016, Panchenko et al. [34] collect the first comprehensive
dataset to evaluate WFP at Internet scale. They propose a new clas-
sifier, CUMUL, which outperforms existing methods both in terms
of recognition rate and computational complexity. The authors
show that while no existing WFP attack scales when applied in
realistic settings, fingerprinting websites, i.e., a set of pages served
under the same domain, scales significantly better than webpage
fingerprinting. Another concurrent WFP classifier, k-FP [19], relies
on a random decision forest to create fingerprints of pages, and
k-NN for the classification itself. The accuracy achieved by k-FP is
similar to that obtained by CUMUL. Other works [7, 19, 52] analyze
different methods to rank WEFP features by their importance.

Recently, several works have applied deep learning (DL) methods.
Contrary to the traditional classifiers described above, these do
not require manual feature engineering. Rimmer et al. [43] show
that automatically created features are more robust in the face of
constantly changing web content. Sirinam et al. [45] focus on other
DL methods to deal with changing content. Other works [2, 5, 33]
further explore the applicability of DL for WFP. Sirinam et al. [44]
present the most powerful WFP attack, deep fingerprinting (DF),
which is an improved design of the Convolutional Neural Networks
(CNN) classifier. DF achieves an accuracy of more than 95% for
both the closed-world (95 URLs) and the open-world (20,000 URLs)
scenarios while requiring a relatively small set of training traces.

WEFP Defenses. Existing WFP countermeasures can be catego-
rized into network-layer and application-layer defenses [6].

Network-layer Defenses. Liberatone and Levine [27] explore dif-
ferent padding schemes on a per-packet level as a basic WFP de-
fense. Wright et al. [51] use traffic morphing to mimic the trace
of another page. However, neither padding nor traffic morphing
defend against WFP [13, 19]. Buffered Fixed-Length Obfuscation
(BuFLO) [13] obfuscates page transmissions by sending packets of
a fixed size at a fixed interval for a certain period of time. Thus,
the traffic generated by different websites has a similar continu-
ous data flow. However, besides its high latency and bandwidth

overhead, BUuFLO cannot respond to congestion and may even re-
veal the total transmission size [6, 8]. Thus, Cai et al. [6] propose
Congestion-Sensitive BUFLO (CS-BuFLO) that varies the rate of
packet transmissions. Tamaraw [7] uses smaller fixed packet sizes
and treats incoming and outgoing packets differently to avoid un-
necessary padding and dummy traffic. However, the large overhead
created by these defenses hinders their real-world adoption.
WTEF-PAD [23] further reduces the latency and bandwidth over-
head created by the prior defenses. It relies on predefined his-
tograms of packet inter-arrival times to detect time gaps between
packets and covers them by adding dummy packets. To obscure
traffic bursts, it adds statistically-unlikely delays between packets.
Due to its low overhead, WFP-PAD is the most favored defense for
adoption in Tor [17, 31]. However, Sirinam et al. [44] showed the
inefficiency of WFP-PAD against their DF classifier by achieving
over 90% accuracy. Li et al. [26] also confirm the high information
leakage of WFP-PAD. DynaFlow [29] morphs packets into fixed
bursts, pads the total number of bursts, and dynamically changes
packet inter-arrival times. In contrast to CS-BuFLO and Tamaraw,
DynaFlow tunes the amount of overhead introduced and, thus, pro-
vides a better trade-off between security and efficiency. FRONT and
GLUE have been recently suggested [18]. While FRONT creates
random noise at the beginning of a page load, GLUE adds dummy
packets between consecutive page loads to obscure separation of
different page loads. However, the accuracy of today’s WFP attacks
remains comparably high, even if both defenses are applied.
Based on traffic morphing, Glove [32] creates clusters of similar
web pages and inserts only a small amount of cover traffic to make
the pages within a cluster indistinguishable. Supersequence [47]
is a similar defense that clusters traces of different sites to cre-
ate a group of anonymity sets and extracts the shortest common
supersequence. Walkie Talkie [50] forces the browser to communi-
cate in a half-duplex mode. Thus, packets in one direction can be
buffered and sent in bursts, together with dummy traffic. This, in
turn, makes it easier and more efficient to create supersequences
based on burst sequences. However, the main limitation of these
methods remains their dependence on a priori knowledge about
each site. It is especially challenging for sites with dynamic content.
Recently, Henri et al. [20] have proposed splitting traffic ex-
changed between the user and its entry OR over two different,
unrelated network connections (e.g., DSL, Wi-Fi, or cellular net-
works) to protect against a malicious ISP. However, this design
decision fails to defend against a malicious entry OR — a weaker
attacker (than an ISP) that is cheaper and easier for deployment.
Even if this defense notably reduces the accuracy of state-of-the-art
WEP attacks on a single network connection, a malicious entry OR
could still observe the user’s identity and the complete data flow
and, thus, perform WFP. In contrast, our defenses distribute the
user traffic over multiple entry ORs and limit the data a single OR
can observe. Also, the authors of [20] do not analyze the influence
of the number of used network connections on the accuracy of
WEFP attacks — one of the main contributions in our work.
Application-layer Defenses. Panchenko et al. [35] suggest a browser
plug-in that adds noise by loading another random page in par-
allel. However, this is not sufficient to defend against WFP if the
bandwidth overhead is to be kept reasonable [47]. The Tor project

wouit
(6) Split & oo @ by St ~
M e i
erge Mntry OR { Merge E@
(4) Join :§

"""""" 5 Exn OR Web Server
- +/Middle OR
Tor User NS, 7 \
@,
Cell-Order Control

Tor Network Depl p
eployment of
Entry OR @ TrafficSliver-Net

== Three-Hop Circuit
=== Two-Hop Circuit

Figure 1: Design overview of our network-layer defense.

proposed to randomize the pipeline size (i.e., the number of re-
quests processed in parallel) and the order of requests for embedded
website content [38]. HT'TP Obfuscation (HTTPOS) [30] modifies
packet sizes, web object sizes, and timing by manipulating HTTP
requests and basic TCP features. HTTPOS can also modify and
reorder HTTP headers and insert dummy HTTP requests, but still
sends them over one TCP connection in contrast to our defenses.
Neither randomized pipelining nor HTTPOS are as effective as
assumed against WFP [8, 47]. Even worse, randomized pipelining
might lead to improved classification accuracy in some scenarios.
Cherubin et al. [9] propose client- and server-side defenses, LLaMA
and ALPaCA. LLaMA reorders outgoing HTTP requests by ran-
domly delaying them and adds dummy HTTP requests. ALPaCA
applies morphing by padding the web objects of a page and insert-
ing invisible dummy web objects. Through they achieve similar
protection, they are applicable for Tor onion services only.

To sum up, none of the former WFP defenses is as effective as
assumed, which highlights the need for a new efficient defense.

4 TRAFFICSLIVER AT NETWORK LAYER

The core idea of our network-layer defense, TrafficSliver-Net, is
to distribute TCP traffic across multiple circuits built over several
unique entries but shared middle and exit ORs [37]. We implement
the concept of multipathing entirely within Tor. Thus, we achieve
transparency to user applications and independence from third par-
ties, e.g., web servers. Our main goal is to defend against a malicious
entry OR performing WFP. Therefore, the tasks of splitting and
merging are performed around (before and after) the entry OR in a
circuit. In particular, we deploy our defense on the user’s OP and
the middle OR, which, in turn, implement mechanisms to distribute
and reassemble user traffic from multiple entry ORs. We prefer to
merge and split traffic at middle ORs as exit ORs have the lowest
amount of bandwidth and quantity in Tor [21]. In contrast to the
resource-scarce and outnumbered exit ORs, Tor contains an exces-
sive number of middle ORs (i.e., each OR can act as a middle node
by default), and their position in the circuit is not sensitive (i.e.,
neither the origin nor the destination are visible by the middle OR).
By introducing new types of Tor cells, our defense ensures that the
construction of several circuits (consisting of distinct entry ORs
and common middle and exit ORs) and the splitting of traffic sent
back to the user are fully controlled by the user’s OP.

Multipath Tunnel Creation. Figure 1 illustrates the opera-
tion of our defense. To transmit data over a number m of unique
entry ORs, the user’s OP creates multiple individual circuits, sub-
circuits, along each of these entry ORs to a common middle OR.

Each sub-circuit constitutes one path of our multipath transmission
scheme. The user’s OP first establishes an initial three-hop sub-
circuit through one of the entry ORs by reusing the existing Tor
circuit creation concept [11] (step 1). Next, it creates m — 1 two-hop
sub-circuits starting at one of the entry ORs, that has not been
selected yet, and ending at the same middle OR used in the initial
three-hop circuit (step 2). Once these sub-circuits are built, a joining
process informs the middle OR about the relationship between the
m — 1 two-hop sub-circuits and the initial three-hop sub-circuit.
To this end, we employ a cookie-based authentication mechanism
whose operation is controlled and verified by the user (step 3).
The operation of our cookie mechanism is inspired by the ren-
dezvous cookie applied in Tor onion services to establish a connec-
tion between the user and an onion service [41]. Similarly to the
rendezvous cookie, the cookie in our defense consists of a 20-byte
cryptographic nonce chosen randomly by the user. To authenticate
the relationship between the individual sub-circuits, the user first
sends the generated cookie along the initially-created three-hop
sub-circuit to the middle OR. To do this, we introduce two new Tor
cells, SET_COOKIE and COOKIE_SET. While SET_COOKIE is utilized
by the user to initially send the newly-created cookie to the middle
OR, COOKIE_SET is transmitted by the middle OR to acknowledge
the (successful) receipt of the cookie. Then, the user joins the re-
maining two-hop sub-circuits by transmitting the same cookie in
another newly-introduced Tor cell, JOIN, through these sub-circuits
to the middle OR (step 4). Upon a successful match of the received
cookie with a stored cookie of an already-existing three-hop sub-
circuit, the middle OR acknowledges the joining process with a new
Tor cell, JOINED. This completes the connection establishment.
Splitting and Merging Traffic. We use a bidirectional circuit-
level cell splitting to achieve multipath user connections (step 6).
To execute the actual splitting, the user’s OP (or the middle OR,
depending on the direction) sends each cell containing user traffic
through an individually determined sub-circuit. Then, the respec-
tive merging point receives the cells on the separate sub-circuits
and reassembles them to a complete data flow for further forward-
ing or processing. Importantly, Tor can process cells only if they are
delivered in order. However, cells sent over different sub-circuits
might be delayed or received quicker due to network fluctuations.
Therefore, cell reordering at the merging point is necessary. As Tor
cells do not contain any sequencing information [11], we introduce
a new control cell INFO, in which the user periodically announces
the order of transmitted cells and their sub-circuit assignment to
the middle OR (step 5). If the delivery of a cell is delayed, the respec-
tive merging point buffers all subsequent cells until the missing
cell arrives. Then, all obtained cells are processed in order. Besides
enabling correct cell ordering, we also introduce the concept of
splitting instructions. Based on the chosen splitting scheme (see
Section 6), the user regularly sends Tor INSTRUCTION cells to the
middle OR to instruct it how to split backward-directed user traffic
to the sub-circuits. Thus, traffic splitting at the middle OR is under
the control of the user, who accepts backward-directed traffic only
in the expected order. To ensure correct decryption (or encryption,
depending on the direction) of cells at the exit OR, the user’s OP
reuses the cryptographic key negotiated with the exit OR (three-
hop sub-circuit setup, step 1) for all two-hop sub-circuits. Thus,
TrafficSliver-Net still encrypts all cells in three onion layers.

Implementation. We implemented TrafficSliver-Net in Tor ver-
sion 0.4.1.6. Our modifications primarily focus on the handling of
circuits and Tor cells. Moreover, we introduced a new split module
that maintains the sub-circuits and provides functionality for the
generation and management of authentication cookies, splitting
instructions, and splitting strategies.

5 TRAFFICSLIVER AT APPLICATION LAYER

Our application-layer defense, TrafficSliver-App, works completely
independently of the underlying anonymization network. Contrary
to TrafficSliver-Net, here, we do not require any modifications in
Tor and, thus, ensure ease of deployment in practice. TrafficSliver-
App acts as a local proxy between the user’s browser and the user’s
OP. It first creates a number m of separate Tor circuits, each of
which contains a unique entry OR. To do this, we launch multiple
user’s OP instances, each maintaining a single three-hop circuit.
While these circuits are established using the existing Tor circuit
creation concept [11], we ensure that none of them employs the
same entry OR. Our proxy also uses multiple persistent connections
via each of the circuits to request different objects in parallel (similar
to ordinary browsers). It then accepts HT TP requests coming from
the user’s browser, modifies them as needed, and sends them over
one or more of the built circuits. In particular, our proxy supports
two modes of operation: (i) it sends separate full HTTP requests for
distinct web objects belonging to the same website over different
entry ORs, or (ii) it requests different fractions of a single web
object via different circuits. In Section 8.2, we show that sending
full HTTP requests over different entry ORs is already sufficient
to protect against today’s WFP attacks. However, we argue that
the support of the second mode of operation by TrafficSliver-App
might become an important strategy to enhance our defense in
view of attacker advancements. Therefore, we describe the second
mode of operation of our defense in more detail.

When browsing the Web, the user typically sends a sequence of
HTTP GET requests to fetch all web objects needed to display a
site. The HTTP/1.1 protocol provides an additional feature for GET
requests, the range option, which enables downloading a portion of
a web object (originally used, e.g., for resuming fetching of large
objects [14]). TrafficSliver-App exploits this range option to split
each outgoing GET request into several partial requests asking for
different fractions of a single web object. The splitting of every
request is based on a preselected splitting strategy (see Section 6).
Then, the proxy transmits each newly generated partial request to
the web server over one of the circuits already built by the user’s
OP. An important requirement to be fulfilled here is to ensure that
multiple fractions of partial requests belonging to a single full GET
request do not traverse the same circuit and, thus, reveal repeatable
traffic patterns. The web server, in turn, processes each partial
request separately and sends the corresponding fraction of a web
object back to our proxy. Finally, the proxy merges all obtained
portions of each resource and returns that resource in a single
HTTP response to the user’s browser.

Splitting and Merging HTTP Traffic. Figure 2 illustrates the
distribution of partial requests over multiple Tor paths, performed
by TrafficSliver-App. Every time the user’s browser sends a GET
request, our defense first determines whether this request can be

LY
ﬂ?\L
oS e 0

GE' ‘“:,ww-e*f“.m ontent
o) \—\os‘:'g - w\ese Pan‘\a\ecs Q-Ag\lw)
Rzt (|
2) COME nLes Entry OR

e B e

Tor Network

Exit OR
“ /Exit OR

3 GET /hello.htm HTTP/1.1
ey @ Host: www.example.com j§
Range: bytes=50-124 /|
Tor User E“ - \
ntry Middle OR
(<) Serp
:as(: e/, ""n, ¢ (
g, W gy HT 2\ ‘ Exit OR
Wtee2Mpfe - .2 (
es‘Qs e.co, (

= 200" Entry OR Deployment of
i Middle OR TrafficSliver-App

Middle OR

Web Server

Figure 2: Distributing partial requests by TrafficSliver-App.

split into multiple partial requests. By default, an HTTP GET re-
quest contains neither the size of the requested web object nor
information as to whether the range option is supported for it.
Therefore, for each resource requested by the user, our proxy sends
an initial partial GET request asking for a small fraction of that
resource (step 1). The main goal is to determine whether the range
option is supported for that resource and to identify the size of the
resource. While a small content length given in the partial request
increases the number of resources that can be split (as, with a high
probability, only a part of an object is requested), it also increases
the number of packets transmitted via Tor and, thus, the bandwidth
overhead created by the defense. Based on empirical analysis, we
established a content length of an initial partial request for each
resource of 50 bytes as a reasonable trade-off between privacy and
performance. If the web server does not support the range option,
it directly returns the complete resource. In this case, no further
request is needed to be sent to fetch that resource. If the size of the
resource is not present in the header of the server response, i.e., it
remains unknown, only a single additional request is sent by our
defense to fetch the rest of the resource. Moreover, if the size of the
resource is smaller than the fraction requested in the initial request,
then the server sends the complete resource back and no further
request is required to be sent either. Please note that the inability
to split a web object will not endanger the user’s privacy as the
distribution of full HT TP requests and responses over distinct entry
ORs is already sufficient to protect against the today’s WEFP attacks,
as shown in Section 8.2. Otherwise, our defense can create multiple
partial requests based on a preselected splitting strategy to fetch
the remaining portions of that resource (see Appendix B).
Implementation. TrafficSliver-App is developed as an HTTP(S)
proxy, written in the Node. js JavaScript framework [16]. We have
one instance of our defense that performs the splitting on non-
encrypted HTTP traffic. In the case of encrypted web traffic, our
proxy performs a man-in-the-middle attack to arbitrarily observe
and modify the HTTP traffic. It intercepts TLS handshakes initiated
by the user and performs them on behalf of the web browser (using
its certification authority list or pinning). After splitting the original
HTTP GET request, it again encrypts the traffic intended to the web
server using TLS. Our proxy can be easily integrated into the Tor
Browser and, thus, avoid any deployment overhead for the users.

6 OUR TRAFFIC SPLITTING STRATEGIES

Regardless of whether we implement multipathing at the network
or application layer, the main challenge for our TrafficSliver de-
fenses is to provide an efficient traffic-splitting strategy against

WFP attacks. In other words, the target splitting scheme should
produce highly diverse traffic distributions among different loads of
the same page and, thus, hinders an adversarial entry OR in identi-
fying (repeatable) patterns. To find such a strategy, we analyze the
influence of (i) the number of distinct entry ORs used to establish
multiple paths through Tor, and (ii) the percentage and diversity of
traffic observed at each of the entry ORs.

Number of Entry ORs Used for Traffic Distribution. To use
our TrafficSliver defenses, we first need to define the number m of
distinct entry ORs utilized by the Tor user for a multipath commu-
nication. While a large number of entry ORs decreases the amount
of information available to each entry OR, it also increases the
likelihood of selecting a malicious entry OR for a circuit belonging
to a single multipath user connection [10]. Thus, we explore how m
influences the user’s protection against WFP attacks and propose a
trade-off between privacy protection and performance overhead.

Distribution of Traffic over Multiple Circuits. Once the num-
ber of entry ORs is selected, we need to define how to distribute
the web traffic via them. Here, we have to consider the individual
properties of our defenses due to the level of their implementation.
These properties, in turn, do not enable the deployment of every
splitting scheme in both defenses. While TrafficSliver-App relies on
knowledge about the size of each web object but can neither directly
manage the transmission of separate Tor cells nor directly influence
the selection of a circuit for incoming traffic, TrafficSliver-Net is
not aware of the web objects exchanged through it but can handle
every cell sent or received by the user. Thus, splitting schemes that
particularly aim to distribute separate Tor cells cannot be applied
at the application layer and, vice versa, splitting schemes operating
on GET requests cannot be used at the network layer.

Distribution of Traffic at Network Layer. Here, our most basic
splitting strategy is round robin. When applied in TrafficSliver-Net,
we switch to the next circuit for each Tor cell. Our goal is to analyze
the level of security provided by such a simple splitting scheme
and assess whether only the multipathing or the use of a sophisti-
cated splitting strategy is more important to build an efficient WFP
defense. We also analyze random splitting, in which we randomly
select a circuit for each Tor cell. We compare these strategies to
traffic splitting by direction, i.e., we use one circuit for incoming and
another circuit for outgoing Tor cells. To increase the diversity of
the traffic distribution for repeated page loads of a common website,
we also evaluate a weighted random (WR) scheme. In WR, for each
page load, we create a separate vector w consisting of m probabili-
ties for each splitting point, which, in turn, are computed from a
m-dimensional Dirichlet distribution. We use these probabilities
to weight the selection of an entry OR for each cell transmitted
between the user’s OP and the middle OR. The Dirichlet distribu-
tion is a common way to model random probability mass functions
for finite sets. As required by our strategies, it outputs directly m
random positive values that add up to one. Finally, we consider a
batched weighted random (BWR) splitting strategy. Contrary to WR,
here, the vector w is utilized to weight the choice of an entry OR
for a batch of n Tor cells. As we do not insert any dummy traffic
and constant-size batches, traveling across distinct circuits may still
reveal useful traffic patterns for WFP. Thus, we update n constantly
during a single page load, i.e., after each batch. While a small n
converges BWR to the WR strategy, a large n may not produce a

sufficient level of traffic randomness, e.g., for small websites, as
the splitting of traffic will be limited or even may not occur at all.
Based on our empirical analysis (see Appendix A), we adjusted n
to be uniformly sampled from the interval n € [50, 70].
Distribution of Traffic at Application Layer. As introduced in Sec-
tion 5, TrafficSliver-App operates in two modes. For the first mode
of operation where our defense sends full GET requests for distinct
web objects over different entry ORs, we analyze the multi-path
splitting strategy. Here, our proxy randomly selects a circuit for
each request coming from the user’s browser without splitting it
into multiple partial requests. The goal is to explore the extent to
which the level of traffic randomness introduced only by the use of
multiple paths is sufficient to protect against WFP. For the second
mode of operation where TrafficSliver-App requests different frac-
tions of a single web object via different Tor paths, our most basic
splitting scheme is round robin, where we request an equal portion
of a single web object via each Tor circuit. We further consider an
exp weighted random strategy. For each page load, we create a vector
w of fractions, which, in turn, are computed from the probability
density function of the exponential distribution by using the fol-
lowing formula: f(x,1) =1 — e x>0, 0r f(x,A) =0forx < 0.
The exponential distribution generates sets of random numbers
independent from each other over time. The values of A are selected
arbitrarily at random every time to ensure the unpredictability of
the created fractions for each page load. The vector w is then used
to split each resource of a website into several portions. In addition,
we discard generated vectors that contain fractions below a given
threshold. Through experimental analysis, we established 0.001 of
the total size of a web object as a reasonable threshold. Once the
vector w of fractions is generated, it is applied to split all resources
necessary to load a given page. The vector w is also used to weight
the selection of an entry OR for each partial request transmitted be-
tween the user and the web server. Finally, to increase the diversity
of the traffic distribution for repeated loads of the same website,
we apply a varying exp weighted random scheme. Contrary to the
previous strategy, here, we randomly select a separate subset r of
entry ORs from the interval r € [2, m — 1] used for the download of
each resource on a website. Based on the chosen number of entry
ORs, we create a separate vector w of fractions for each resource.

7 EXPERIMENTAL SETUP

To allow for verifiable results, we next present our evaluation setup.

Simulated Dataset. To initially evaluate the efficiency of our
traffic-splitting schemes integrated in TrafficSliver-Net, we devel-
oped a simulator that artificially splits real-world traffic traces based
on the selected scheme. We refer to the order of all cells that are
assigned to the same sub-circuit after splitting as a subtrace. In
total, our simulator creates m subtraces for a single page load. It
also takes the latency of the different circuits between the user
and the middle OR into account when employing our multipath
transmission scheme. To this end, we measured the round-trip time
(RTT) of several circuits consisting of the same middle and exit
ORs but different entry ORs in the real Tor network. As in previous
work [36], we measured the RTTs by sending a relay connect cell to
localhost and triggering the reply time. We gathered RTTs for 4,073
successfully built circuits, which we integrated into our simulator.

Real-World Datasets. For the closed-world analysis of our Traf-
ficSliver defenses, we rely on a dataset consisting of the 100 most
popular sites [3]. First, we collected 100 traces for each website with-
out applying our defenses and refer to this non-defended dataset as
ALEXA-NODEF. Next, we collected traces protected by each defense.
For TrafficSliver-Net, we selected our best traffic-splitting strategy
(based on evaluation results obtained from the simulation of multi-
pathing) to collect 100 traces for each website. We call this dataset
ALEXA-NET-DEF. For each splitting scheme in TrafficSliver-App, we
gathered 100 traces for each website in the real Tor network. Finally,
we visited once each of the 11,307 Alexa most popular websites,
excluding the first 100 sites used to build our closed-world dataset,
ALEXA-NODEF-BG, without applying our defenses and used them as
background for our open-world evaluation.

During crawling of our datasets, as in related work [34, 43, 44],
we excluded websites that deny user traffic coming from Tor, show
a CAPTCHA, have no content, or redirect to other sites that are
already present in our dataset. We also removed page loads indi-
cating a client or server error as the attacker is not interested in
fingerprinting broken page loads. We applied the automated ap-
proach presented in [34] to collect all traces. For each page load, we
recorded meta-data such as the size and direction of the transmitted
TCP packets by using a toolbox containing the Tor Browser 9.0.1
and tcpdump and then reconstructed the Tor cells by applying a
previously-used data extraction method [34]. For our evaluation,
we focus only on Tor cells, as the different layers for data extrac-
tion (e.g., TCP packets, TLS records, or cells) only have a marginal
influence on the classification results [34]. Hence, our results are
comparable for other extraction formats. Moreover, we launched
several middle ORs in the real Tor network that were used by our
deployed Tor clients to perform traffic splitting and merging, as
required by TrafficSliver-Net. Our middle ORs supported multipath
user connections and regular one-path circuits, simultaneously.

Classifiers and Evaluation Setup. For our evaluation, we con-
sidered four state-of-the-art WFP attacks: k-NN [47], CUMUL [34],
k-FP [19], and DF [44]. For details about these WFP classifiers, we
refer the reader to the original papers. For all following experi-
ments in this paper where we do not explicitly mention a different
methodology, we apply 10-fold cross-validation with respect to the
total number of collected page loads, i.e., the data is split into 10
evenly large parts, i.e., folds. Then, the entire process of training
and testing is repeated 10 times, using one of the 10 folds as test
data and the remaining nine folds as training data in turn.

8 EVALUATION AND DISCUSSION

In this section, we evaluate our novel defenses against state-of-
the-art WFP attacks. We assume that the attacker controls one or
several malicious entry ORs in victim’s multipath connections. For
all experiments, the adversary is aware of the applied defense and
its splitting scheme. We further assume that the attacker has enough
resources to collect a representative training dataset. Although we
executed experiments where the attacker trains the WFP classifiers
with non-defended traces, we achieved very poor classification
accuracy for all WFP attacks and omitted this evaluation as we pro-
pose better training strategies for the adversary. In particular, the
best strategy for the attacker is to use all collected subtraces of each

page load. The adversary represents these subtraces as separate
input vectors belonging to the same class and generates features
for these vectors to train the WFP classifiers. We also ensure that
all subtraces of the same page load are used either for testing or
for training only. Using only single, randomly-chosen subtraces
from each page load leads to lower accuracy and will not be the
dominant strategy of the adversary. We believe to have addressed
the logical advancements for the attacker in the learning phase and
deem it unlikely that further improvements can be made without
extensive efforts (which would also require enhancements to to-
day’s WFP classifiers). For our closed-world analysis, we computed
the accuracy, i.e., the probability of a correct prediction (either true
positive or true negative). Similarly to related work [19, 47], we
calculated the TPR, i.e., the fraction of accesses to foreground pages
that were detected, and the FPR, i.e., the probability of false alarms,
for our open-world experiments.

In Section 8.1, we focus on our network-layer defense. We first
identify the proper number of used entry ORs and the optimal
traffic splitting scheme through simulations and, then, confirm
the efficiency of our defense in real-world settings. We show that
TrafficSliver-Net can reduce the accuracy from more than 98% to
less than 16% for all state-of-the-art WFP attacks without adding any
artificial delays or dummy traffic. In Section 8.2, we provide insights
into the effectiveness of our application-layer defense. We show
that by sending single full HTTP requests for different web objects
over distinct entry ORs, TrafficSliver-App reduces the detection
rate of WFP attacks by almost 50 percent points. Although it offers
lower protection than TrafficSliver-Net, it provides a security boost
at the cost of a very low implementation overhead and does not
require any changes in the underlying anonymization network.

8.1 Analysis of Our Network-layer Defense

8.1.1 Determination of Optimal Splitting Scheme. To identify a
good traffic splitting scheme for TrafficSliver-Net, we use the simu-
lator presented in Section 7 to artificially split the non-defended
traffic traces in ALEXA-NODEF. For each traffic splitting scheme (see
Section 6), we generated a separate dataset containing artificially
created defended traces. Table 1 details the accuracy of each WFP
classifier in a closed-world scenario without defense (column “Un-
defended”) and against our evaluated splitting strategies for varying
numbers m of entry ORs, where the attacker controls one of them.

Number of Entry ORs Used. First, we analyze how the num-
ber of entry ORs used influences the accuracy of WFP attacks, as
summarized in Table 1. Independent of the chosen strategy, we
observe that all WFP attacks become less effective when the user
utilizes a larger constant number of entry ORs to fetch a website.
We further notice a slight decrease of the classification accuracy for
a variable number of entry ORs (columns “[2,5 |”) and a constant
m > 4 regardless of the splitting strategy. In case of a variable num-
ber of entry ORs, the adversary is challenged by the uncertainty
of the applied splitting strategy as website-specific patterns are
less deterministic. Additionally, our most effective scheme, BWR,
drops the accuracy of all classifiers to less than 14% when a con-
stant number of five entry ORs is utilized. Therefore, we consider
m =5 as a good choice and argue that this choice neither signif-
icantly increases circuit establishment times (current versions of

Table 1: Accuracy (in %) of state-of-the-art WFP attacks in scenarios without defense and against our splitting strategies, where
m indicates the number of entry ORs used in user connections.

Our Splitting Strategies
Undefended Round Robin Random By Direction Weighted Random Batched Weighted Random
m 1 2 3 4 5 [25]] 2 3 4 5 [25]| W ou| 2 3 4 5 [25]]| 2 3 4 5 [25]
k-NN 98.20 91.29 89.52 87.25 8659 7554 |87.74 82.51 78.09 7209 62.28 |37.05 3245|1614 9.66 432 438 457 | 689 449 362 3.15 3.22
CUMUL 98.50 96.30 86.88 85.04 8221 80.07 | 9551 92.64 89.71 87.02 79.34 |37.43 26.71 | 63.05 53.16 47.90 41.62 47.92 |21.22 9.11 476 4.63 8.60
k-FP 98.40 96.73 94.83 93.21 92.22 83.66 |94.48 91.51 89.13 86.41 76.59 |59.07 56.17 | 55.01 4576 42.74 40.55 4131 [33.37 2133 1648 13.46 18.24
DF 98.75 97.56 95.91 94.64 93.01 90.25 [96.01 9477 9343 9031 84.05 |29.99 2615|6594 5421 47.77 4233 4779 [31.82 1474 691 6.58 11.44
1 Sag=====2 FECIUOL I i 1004 @
> .
9 ! P 4 .2
< 0.8 ,' Leler” -1 — 80 10§
7, IS 5
q>_; 1, 0 — . 59
Zz 06 B N 2> 60 —m— Defended classifier ¢ 103 =
=) < .
3 0.4 e — k-FP || 5 40 Undefended classifier 5
o — k-NN 3] ¢ Number of predictions 5
L o —— CUMUL 2 . 2
2 0.2 : DF 20 10
=) Without defense €
¥ With defense — Random guess >
0" - 0 \ Zz
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

False positive rate

Figure 3: ROC curves for today’s WFP attacks in open world.

Tor already build three circuits preemptively [11]) nor dramatically
increases the probability of selecting a malicious entry OR [10] (see
Section 8.5). Our experiments confirm our initial intuition that the
data observed on a single client-to-entry sub-circuit by a malicious
entry OR is not sufficient to perform WFP attacks.

Efficiency of Different Splitting Schemes. To find the most
suitable splitting method, we explore the efficiency of each strategy,
as summarized in Table 1.

Round Robin & Random. Overall, we notice a slow decrease in
accuracy with the round robin strategy as the number of entry ORs
used increases. We observe a similar trend with a steeper decline for
the random strategy. Still, the accuracies of CUMUL and DF remain
comparably high, corresponding to the correct identification of
most page loads. A reason is that both strategies produce subtraces
of similar size for different page load traces belonging to the same
website when used in a setting with a constant m. Moreover, round
robin cannot completely hide the total size of a given website — one
of the most important features for WFP attacks [19] — even when
observing only a fraction of the page load. Both round robin and
random schemes create traffic diversity in a setting with a variable
number of entry ORs, resulting in accuracy drops of more than 10%.
However, this drop is insufficient for a practical deployment.

By Direction. A simple scheme, which only splits the traffic by
direction, already delivers a significant decrease in accuracy for
all WFP attacks. Even though the number of transferred cells per
direction remains unaltered, most classifiers only recognize a third
of the page loads. This drop might be caused by the classifiers’
inability to retrieve information about the relationship between
incoming and outgoing cells. However, despite the absence of this
characteristic, k-FP profits from other features that use available
information on timing and data rate per direction, contributing to
a comparably high classification rate for this attack.

Weighted Random & Batched Weighted Random. When applying
a WR circuit selection, we observe a significant decrease in the

Minimum R

Figure 4: Accuracy achieved by both classifiers, one trained
on defended subtraces and another trained on non-defended
traces, when detecting only subtraces whose length is at
least R of the complete page load. The number of evaluated
predictions ¢ is referenced to the right log-scaled y-axis.

accuracy compared to the previous schemes. All evaluated WFP
attacks achieve less than 43% accuracy. In case of BWR, we further
reduce the accuracy of all WFP attacks down to 14%. In particular,
the accuracies of CUMUL and DF cannot achieve a detection rate
higher than 7%. For the worst-performing classifier, k-NN, the rate
of reliably-detectable page loads drops below 4%. We believe that
the significant difference in the accuracies between WR and BWR
is caused by the fact that WR cannot fully destroy consecutive se-
quences of Tor cells within a given traffic trace, often exploited by
WEFP attacks to extract features (see Appendix A). Another reason
for the significant accuracy decrease achieved by BWR is the diver-
sity in total size among the different subtraces of a single website.
A notable observation is that a variable number of entry ORs does
not improve the efficiency of both splitting schemes, WR and BWR,
as these schemes already introduce a sufficient diversity by design.
To sum up, based on our simulation results in Table 1, we showed
that BWR with a constant number of five entry ORs generates
subtraces with highly diverse characteristics and, thus, serves as
our most effective splitting scheme used in the rest of the paper.
We also believe that the protection of the other splitting schemes
and other combinations of m will be worse in case of advanced
attacker scenarios as they already achieve lower protection in our
simulation and will omit this evaluation due to space constraints.

8.1.2 Open-world Evaluation. Next, we evaluate the efficiency of
TrafficSliver-Net using BWR with five entry ORs in an open-world
scenario. In particular, we focus on a scenario where the adversary
aims to detect whether a single (sub-)trace of a testing page belongs
to the foreground set or not, without trying to identify the exact
foreground website. If we are able to reduce the success of the
WEP classifiers in this setting, then their performance will be even

Table 2: Accuracy (in %) of WFP attacks for multiple malicious entry ORs during a single page load.

(a) Two malicious entry ORs.

Defended
Training strategy | Si Sa S3 S4 Ss
k-FP 5.85 2523 30.16 28.14 35.90
DF 6.82 14.01 27.75 19.24 35.71
CUMUL 7.95 9.11 16.68 12.75 19.47
k-NN 5.78 6.56 839 1347 9.11

worse in the scenario when the adversary aims to detect the exact
foreground website. As a baseline, we first used the non-defended
datasets ALEXA-NODEF as a foreground set and ALEXA-NODEF-BG as
our background set and computed the receiving operating charac-
teristic (ROC) curve for each classifier. We then applied the simu-
lator from Section 7 to artificially split the non-defended traces in
ALEXA-NODEF, i.e., our foreground set, and the non-defended traces
in ALEXA-NODEF-BG — our background set — using BWR with five
entry ORs. Analogously, we calculated the ROC curve for each clas-
sifier using these defended traces. As shown in Figure 3, we observe
a clear proximity of the curves of all WFP classifiers to the random
guess (black line), when TrafficSliver-Net is applied. While the area
under the curve (AUC) indicating the detection of non-defended
traces using all WFP attacks lies between 0.87 and 0.97 (AUC is one
in case of a perfect classifier), the best-performing classifier, k-FP,
reaches an AUC of only 0.60 when applying our defended dataset.
Moreover, DF, k-NN, and CUMUL achieve a marginal higher AUC
than random guessing (i.e., AUC = 0.5). Hence, the adversary is not
able to conduct a successful WFP attack in an open-world scenario.

8.1.3 Effectiveness of TrafficSliver-Net in the Real Tor Network.
Once we had identified the best traffic-splitting scheme and the
optimal number of entry ORs, we deployed this strategy in the real
Tor network and collected a real-world dataset (ALEXA-NET-DEF).
We then computed the accuracies of all WFP attacks by using these
defended traces as well as non-defended traces in ALEXA-NODEF,
which we use as a baseline. Table 4 summarizes the accuracy of
each WFP classifier in a closed-world scenario. As we can see, the
classification results obtained by using the defended traces gathered
from the real Tor network are analogous to those results achieved
by using simulated defended traces. In particular, we observe a
dramatic reduction of the detection rate from more than 98% to less
than 16% for all state-of-the-art WFP classifiers. Simultaneously,
TrafficSliver-Net does not introduce any artificial delays or dummy
traffic to counter these WFP attacks. Thus, we can conclude the
effectiveness of our network-layer defense in real-world settings.

8.1.4 Security against More Advanced Adversary. We further ex-
plore the performance of TrafficSliver-Net against an unrealistically
strong attacker that is even aware of the portion of traffic of a com-
plete page load that is transmitted over an observed client-to-entry
connection. To analyze the level of danger for the users in this
scenario, we assume that the attacker possesses two classifiers: one
trained on non-defended traces and another trained on defended
subtraces whose length represents a certain minimum ratio R from
the corresponding complete page load. Then, we compute the accu-
racy achieved by these classifiers when the attacker tries to detect
only subtraces whose lengths are at least a given mimimum R from

(b) n malicious entry ORs.

Defended Undefended
n 2 3 4 5 -
k-FP 3590 5592 80.62 96.52 98.40
DF 35.71 65.62 86.92 97.40 98.75
CUMUL | 19.47 4352 72.86 96.56 98.50
k-NN 13.47 2994 52.11 94.29 98.20

the respective complete page loads. We executed this experiment by
using both datasets ALEXA-NET-DEF and ALEXA-NODEF and k-FP —
the best-performing WFP attack against our defense. Figure 4 shows
the results obtained for a closed-world scenario. While the accuracy
achieved by our classifier trained on defended subtraces is almost
constant and remains below 25% for a minimum R < 0.6, the recog-
nition rate of the other classifier trained on non-defended traces
is close to zero for the same range of R. Hence, we can conclude
that our traffic-splitting-based defense achieves good protection
against WFP attacks as long as each client-to-entry user connec-
tion contains less than 60% of the total length of a given page load.
In contrast, high detection rates are achieved only for subtraces
comprising more than 80% of a complete page load.

8.1.5 Security against Multiple Malicious Entry ORs. Finally, we
consider an even more-powerful adversary controllingn,2 < n < 5,
malicious entry ORs in real victim multipath user connections and,
thus, observing multiple client-to-entry connections utilized to load
a single page. In this scenario, the attacker gains additional knowl-
edge about the complete page load by merging the sequences of Tor
cells that are transmitted through the compromised client-to-entry
connections into a single subtrace. However, in order to achieve
high recognition rate, the adversary needs to also adjust the training
strategy applied for the classifier. To find the best training strategy
in case of multiple malicious ORs, we explore several alternatives
that the adversary can use for the training process. In our first
training strategy, Si, we assume that the adversarial classifier is
trained on non-defended (i.e., non-split) traces. As in the previous
sections, in the second strategy, Sz, we assume that the attacker
uses all subtraces belonging to a single training page load as sepa-
rate inputs for training the classifier. In the third strategy, S3, the
traces for training consist of the ordered sequences of Tor cells that
were transmitted through n consecutive client-to-entry connections
(e.g., if the total number of entry ORs used by a user is four and the
number of malicious entry ORs is two for a given page load, a single
training trace is the union of two subtraces traversing the first and
the second entry OR). We further study another strategy, S4, where
the adversary builds training traces by merging n randomly-chosen
subtraces. In our last strategy, Ss, the adversary creates all possible
combinations of training traces that consist of n merged subtraces
(ie., (’:l’) training traces in total). For all experiments, the testing
traces consist of n randomly-chosen, merged subtraces (this repre-
sents what an attacker would observe in reality). First, we evaluated
these strategies by using our defended traces in ALEXA-NET-DEF
against n = 2 malicious entry ORs. Table 2a shows the classification
results obtained for a closed-world scenario. In case of DF, k-FP,
and CUMUL, the best strategy for the attacker is to use all possi-
ble combinations of two merged subtraces for training (Ss) and,

Table 3: Accuracy (in %) of state-of-the-art WFP attacks
against our application-layer splitting strategies.

k-NN CUMUL k-FP DF

Undefended 98.20 98.50 98.40 98.75

Exp weighted random 50.32 60.41 60.98 76.28

Varying exp weighted random | 25.20 38.20 46.08 71.70

Multi-path 14.93 24.13 28.72 57.34
0.04 foses, Timing information (undefended)

3}

§ @ Size information (undefended)

2 0.03 (] A Timing information (TrafficSliver-Net) |

o

e O Size information (TrafficSliver-Net)

g Aap ° A Timing information (TrafficSliver-App)

o 0.02 YN .) - B

=% Oa O Size information (TrafficSliver-App)

£ 220ga00

= O0000AA 00630050

o AAAAAAAAAOAogoQgOO OA@

> 0.01 ..OAA éééﬁg@ﬁ@g&}@ |

= .) 333

S 000g, 6@09@?

[AA A-A-T
0 l l l l l l l l l

1 5 10 15 20 25 30 35 40 45 50
Feature rank
Figure 5: Feature importance score of the first 50 best-
ranked features for defended and non-defended traces.

thus, cover all potential variations of testing subtraces. Although
the adversary achieves a slightly higher recognition rate for k-NN
when using Sy, the difference in the accuracies between S4 and Ss
is neglectable and might be caused by the use of a specific dataset.
Thus, we conclude that S5 serves as our most effective training
strategy in case of multiple malicious entry ORs. Notably, as n gets
closer to m, the training dataset contains fewer combinations of
subtraces. The attacker can fully reconstruct the page load, if n = m.

We further analyze the susceptibility of our defense against WFP
attacks for an increasing number of malicious entry ORs by apply-
ing Ss for training. Table 2b shows the classification results obtained
for a closed-world scenario and malicious entry ORs varying from
two to five. As expected, the more traffic is observed, the higher
accuracy the adversary achieves. Nevertheless, the accuracies of all
classifiers remain below 36% in case of two malicious entry ORs.
Although the detection rate increases dramatically (especially for
DF) when three or more entry ORs are compromised, the probabil-
ity to select an excessive number of malicious entry ORs belonging
to a single adversary is statistically not feasible in the real Tor
network. Moreover, when the attacker controls more entry ORs,
DF outperforms the best-performing classifier, k-FP. Finally, the
accuracy achieved in case of five malicious entry ORs converges to
that of non-defended traces (see Section 8.5 for countermeasures).

8.2 Analysis of Our Application-layer Defense

This section provides insights into the efficiency of our application-
layer defense. Based on our preliminary knowledge gained from
the simulation results in Section 8.1.1, we established a variable
random number m, 2 < m < 7, of entry ORs used for each page load.
We then collected a separate dataset for each of our application-
layer splitting schemes (see Section 6) in the real Tor network as
described in Section 7 and compared the accuracies. In Table 3, we
detail the accuracy of each WFP classifier in a closed-world for one
malicious OR without defense and against our application-layer
splitting strategies and discuss the results below.

Table 4: Accuracy (in %) of state-of-the-art WFP attacks
against our TrafficSliver defenses and other prior defenses.

k-NN CUMUL k-FP DF
Undefended 98.20 98.50 98.40 98.75
TrafficSliver-Net | 5.02 5.18 15.44 8.07
TrafficSliver-App [14.93 24.13 28.72 57.34

Tamaraw 4.86 6.86 5.50 4.11
CS-BuFLO 10.40 15.49 21.45 11.88
WTF-PAD 35.23 75.73 67.50 85.62

Multi-path. We first focus on the splitting scheme where the
defense does not require any additional cooperation by web servers
but simply sends full HTTP requests for different web objects over
distinct randomly-chosen entry ORs. Surprisingly, we observe here
the highest decline in accuracy compared to all application-layer
splitting strategies. In particular, k-NN, and CUMUL achieve less
than 25% accuracy, and k-FP, less than 29%. For the best-performing
classifier, DF, our defense reduces the detection rate by almost
50 percent points. We believe that this decrease is caused by the
diversity of split traces that is implicitly generated through the
transmission of different resources over distinct paths.

Exp Weighted Random & Varying Exp Weighted Random. Next,
we analyze splitting schemes that rely on the support of the range
option by web servers. As the fraction of resources within a website
for which the range option is enabled may influence the effective-
ness of our splitting strategies, we evaluated the success of these
schemes by using the Alexa Top 100 most popular sites as well
as the first Alexa 100 most popular websites, which contain only
splittable web objects. Appendix B presents detailed information
about the splittability of websites. However, as we do not observe
any significant difference in the accuracies, we focus only on those
classification results related to the Alexa Top 100 most popular sites
and, thus, enable a comparison with the other results. We also omit
the results for our round robin scheme, since they are similar to
those obtained for our network-layer defense. Overall, we observe a
steep decrease in accuracy with the exp weighted random strategy.
Nonetheless, the detection rate of DF still remains comparatively
high, corresponding to the correct identification of most page loads.
A reason for this might be that TrafficSliver-App cannot hide the
relationship between incoming and outgoing cells sent over a single
client-to-entry connection.

To sum up, we showed that our simple multi-path splitting
scheme creates subtraces with diverse characteristics and, thus,
serves as our most effective application-layer splitting strategy.
However, we believe that — in future work — the level of security
provided by TrafficSliver-App can be further optimized.

8.3 Obfuscation of Most Informative Features

When designing a WFP countermeasure, it is important to ensure
that this defense can obfuscate all discriminating features used by
WPFP classifiers. Therefore, to better understand the influence of our
TrafficSliver defenses on the features used in state-of-the-art WFP
attacks, we computed the feature importance score of non-defended
traces and traces defended by our TrafficSliver defenses by using
an exiting approach presented in [19]. To do this, we categorized
all generated features in two main groups: (i) features which are

1 _—
. TrafficSliver-Net
T 08l —— TrafficSliver-App -
< —— Tamaraw
& —— WTF-PAD
< 0.6 i
aQ —— CS-BuFLO
5 - == Undefended
c 0.4[.
.2
=
1<}
& 02 .
w

ol Lol L Tl Ll Ll

10! 102 10% 10* 10°

Number of Tor cells

(a) Bandwidth overhead.

—

T T T T
]
< 0.8 B
°
[
o0 0.6 B
f‘ TrafficSliver-Net
S _ e
o 04| TrafficSliver-App
o —— Tamaraw
] ozl —— WTF-PAD
= —— CS-BuFLO

! ‘ - - - Undefended

ol a0 T
10° 10! 102 10%

Total page load time [s]

(b) Latency overhead.

Figure 6: Cumulative distribution function (CDF) of bandwidth and latency overhead created by WFP defenses.

— - 2 30
9 D O Forward I Backward | = [0 Forward ll B Backward E Forward o
§ g — D Backward
g = £ 20| o
3 a0 = o
c =
= @ g
2 3 = <
o I 5 10 |
> = L
e & 3
< = k=
= O] £
© 0 T 1
Tor TrafficSliver-Net Tor TrafficSliver-Net Tor TrafficSliver-Net
(a) Throughput. (b) Load on middle OR. (c) Packet inter-arrival time.

Figure 7: Performance evaluation of our network-layer defense.

extracted based on information about packet sizes and ordering, and
(ii) features that involve timing information. Figure 5 shows the im-
portance score of the first 50 best-ranked features for defended and
non-defended traces. Non-defended traces are correctly detected
since classifiers typically rely on features based on packet sizes and
ordering. On the other side, the level of importance of size-related
features reduces significantly when considering defended traces.
In case of TrafficSliver-Net, we obfuscate not only the size-related
features but also the order of transmitting consecutive packets (due
to the use of two splitting points for incoming and outgoing traffic
and the weighted selection of an individual circuit for a batch of
Tor cells). This, in turn, explains the success of our defense over
classifiers such as CUMUL and DF, which mainly rely on packet
sizes and ordering to recognize websites. However, as TrafficSliver-
Net does not add any packet delays or dummy traffic, it cannot fully
obfuscate features involving timing information and, thus, such
features gain a higher importance score. This explains the better
performance of k-FP, which also considers timing information.

Unlike TrafficSliver-Net, TrafficSliver-App cannot obfuscate all
features related to packet sizes and ordering. A reason might be that
we do not have any proactive splitting for incoming traffic. However,
overall we observe that our defense flattens the importance score of
all features to a notably lower value (i.e., less than 0.02) and, thus,
forces WFP attacks to rely on highly fluctuating characteristics
such as data rate, page loading time, or inter-packet timing.

8.4 Overhead & Comparison to Prior Defenses

Finally, we compare the level of security and the amount of over-
head created by the most popular prior WFP defenses CS-BuFLO [6],
Tamaraw [7], and WTF-PAD [23] to our TrafficSliver defenses (us-
ing our most optimal splitting scheme: BWR with five entry ORs and

multi-path). We generated defended traces for the prior defenses by
using our dataset ALEXA-NODEF and their public implementations.

Security against State-of-the-art WFP Attacks. Table 4 shows
the classification results obtained in a closed-world scenario for
a malicious entry OR. TrafficSliver-Net clearly outperforms CS-
BuFLO and WTF-PAD. Although TrafficSliver-Net and Tamarraw
achieve similar accuracies in case of k-NN and CUMUL, Tamar-
raw is significantly robuster against k-FP and DF compared to
TrafficSliver-Net. However, this is achieved at the price of band-
width and latency overheads that are several orders of magnitude
higher than those of TrafficSliver-Net (see Figure 6). Moreover,
we observe that our lightweight TrafficSliver-App defense reduces
the detection rate of the state-of-the-art WFP classifiers, though it
does not achieve the level of protection offered by CS-BuFLO and
Tamaraw. Finally, we observe that TrafficSliver-App outperforms
WTF-PAD — the only one application-layer defense in our compar-
ison — by multiple factor for all WEP attacks. We conclude that our
defenses achieve higher accuracy declines for all WFP attacks than
the most former defenses.

Performance Overhead. An acceptable performance overhead
is important for the real-world deployment of defenses. Therefore,
we measure the bandwidth and latency overhead created by our
defenses and compare it with the overheads generated by the prior
WFP defenses. As shown in Figure 6, both TrafficSliver defenses
produce only a tiny bandwidth overhead in contrast to all former
WFP defenses. In terms of latency, the created overhead is more
conspicuous. However, it is still lower by several orders of magni-
tude compared to CS-BuFLO and Tamaraw. Although WTF-PAD
does not introduce any time delays, it does not provide a sufficient
level of security against WFP attacks as we showed above. We con-
clude that our TrafficSliver defenses produce only a small overhead

in terms of latency and a negligible one in terms of bandwidth
consumption and outperform all former WFP defenses.

Finally, we analyze the overhead created by TrafficSliver-Net
due to the splitting and merging of traffic at the middle OR. To
this end, we deployed TrafficSliver-Net in the real Tor network and
measured the processing times per Tor cell and the throughput for
traffic going from the user to the middle OR (forward traffic) and
from the middle OR to the user (backward traffic). We repeated
each measurement at least 1,000 times. First, as shown in Figure 7a,
we observe a slight decrease in the throughput by approximately
20%. We believe that this decrease will not notably affect the web
browsing experience of the user. Second, as shown in Figure 7b, we
find that the processing overhead of TrafficSliver-Net for middle
ORs is neglectable. Third, as multi-path negatively influences jitter,
we compare the packet inter-arrival times of our defense to those of
original Tor. As shown in Figure 7c, while the packet inter-arrival
time decreases in case of TrafficSliver-Net due to the use of multiple
connections, the number of outliers increases. A reason for this
might be fluctuating characteristics such as different data rates over
the different connections.

To sum up, we showed the effectiveness of our defenses against
today’s WFP attacks and argue that they serve as suitable candidates
for adoption in Tor due to their moderate performance overhead.

8.5 Discussion and Limitations

In contrast to former WFP defenses that aim at protecting against a
malicious ISP and a malicious entry OR, our TrafficSliver defenses
provide protection against malicious entry ORs only. To defend
also against eavesdroppers on the link between a Tor user and
an entry OR, i.e., the case of a malicious ISP, the user can utilize
different access links (e.g., using distinct ISPs via DSL, Wi-Fi or
cellular networks) to connect to the entry ORs, as proposed by
Henri et al. [20]. However, it is worth noting that while it is hard
to become a user’s ISP, it is easier (and, thus, more dangerous for
the user) to become an entry OR by launching multiple ORs in Tor.

From another perspective, the use of multiple entry ORs by Traf-
ficSliver may increase the chances for an attacker to become one of
these entry ORs. Thus, despite that TrafficSliver can deal even with
several malicious entry ORs (see Section 8.1.5), we propose to apply
the already existing guard concept of Tor [28] for the selection of
entry ORs. This idea was already discussed and suggested for adop-
tion in the scope of multipath extensions of Tor for performance
improvements [28]. According to the current guard specification,
a Tor user selects a set of entry ORs for its guard list and sticks to
using them for a certain time period. If the user selects a malicious
entry OR as its guard in Tor, it is completely exposed to the WFP
attack at the entry OR. Contrary, in TrafficSliver, selecting one or
even several malicious guards, as our evaluation shows, does not
lead to successful mounting of WFP. Therefore, we believe that the
adoption of TrafficSliver will not worsen the user’s situation with
respect to path compromises, though further research is needed to
ultimately clarify this question.

TrafficSliver-Net can be used for arbitrary TCP traffic. Though in-
dependent of the underlying anonymization network, TrafficSliver-
App is an HTTP(S)-specific defense. As end-connections to the
destinations are made from different exit ORs, TrafficSliver-App

could experience issues while dealing with user sessions (for the
web server it looks like the same user makes connections from
different IP addresses). This needs further research and could be
mitigated by using the same exit OR for all sub-circuits.

We are the first to use multipath for thwarting attacks in Tor,
though there exist approaches such as Conflux [4] and mTor [53]
to improve the performance. Both of them perform merging and
splitting at the exit OR (see discussion below) and do not allow
any protection-specific options for splitting. An interested reader
would also wonder about the opportunity to apply multipath TCP
(MPTCP) instead of TrafficSliver-Net. However, we argue that this
is not an alternative in Tor. Between each pair of ORs, especially for
privacy reasons, Tor uses a single TCP connection for all circuits
(i.e., TCP terminates at the next OR). Cells of one circuit travel over
multiple TCP connections, one for each OR (hop-by-hop). Hence,
Tor already uses a tailored approach for client-to-server congestion
control (rather than counting on hop-by-hop TCP RTT estimators
or dup ACKs). Even more, ORs cannot use TCP options to forward
circuit-specific MPTCP options: (i) This would deanonymize the
user and (i) ORs multiplex different circuits over the same TCP con-
nection to the next OR. Also, tunneling MPTCP options within the
cell — such that exit ORs can apply them to the server-facing TCP
connection — is undesirable as it requires adapting the resource-
scarce and outnumbered exit ORs [21] and would limit the defense
to MPTCP-supporting web servers. In TrafficSliver-Net, we further
prefer to split and merge traffic at the middle OR as exit ORs have
the lowest bandwidth and quantity in Tor [21]. However, our de-
fense supports both cell splitting and merging at middle or exit,
independent of the circuit length and number of sub-circuits.

9 CONCLUSION

We proposed novel lightweight TrafficSliver defenses at network
and application layer, respectively, to protect against WFP per-
formed by malicious entry ORs. TrafficSliver is based on user-
controlled traffic splitting via multiple Tor paths. We also analyzed
the effectiveness of different splitting schemes that can be inte-
grated in our defenses. We show that our network-layer defense is
able to reduce the accuracy from more than 98% to less than 16% for
all state-of-the-art WFP attacks without adding any artificial delays
or dummy traffic. While TrafficSliver-Net drastically decreases the
accuracy of all state-of-the-art attacks, TrafficSliver-App reduces ac-
curacy by light modifications on the client side only and, thus, does
not require any changes in the underlying anonymization network.
Through an extensive evaluation, we identified system parameters
and traffic-splitting strategies that effectively hamper WFP attacks.
Besides the compatibility with the current Tor network, our de-
fenses do not insert noticeable bandwidth overhead and incur only
minimal latency overhead. Thus, they serve as suitable candidates
for deployment in Tor.

The source code of our TrafficSliver defenses is available at [1].

Acknowledgements. Parts of this work have been funded by
the Luxembourg National Research Fund (FNR) within the CORE Ju-
nior Track project PETIT, the EU and state Brandenburg EFRE StaF
project INSPIRE, and the German Federal Ministry of Education
and Research (BMBF) under the projects KISS_KI and WAIKIKI. We
thank Daniel Forster for the initial prototype of TrafficSliver-Net.

REFERENCES

(1]

[9

=

[10

(11

[12]

[13]

[14]
[15]
[16]

[17

(18]

[19]

[20

[21]

[22]

[23

[24

[25

2020. https://github.com/TrafficSliver.

Kota Abe and Shigeki Goto. 2016. Fingerprinting Attack on Tor Anonymity using
Deep Learning. In Proceedings of the Asia Pacific Advanced Network Workshop
(APAN).

Alexa. 2020. Alexa Tor 100 most popular websites. https://www.alexa.com/.
(Accessed: September 2018).

Mashael AlSabah, Kevin Bauer, Tariq Elahi, and Ian Goldberg. 2013. The Path Less
Travelled: Overcoming Tor’s Bottlenecks with Traffic Splitting. In Proceedings on
Privacy Enhancing Technologies (PoPETS). Springer, Bloomington, IND, USA.
Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. 2019. Var-CNN: A Data-
Efficient Website Fingerprinting Attack Based on Deep Learning. In Proceedings
on Privacy Enhancing Technologies (PoPETS). Sciendo, Stockolm, Sweden.

Xiang Cai, Rishab Nithyanand, and Rob Johnson. 2014. CS-BuFLO: A Congestion
Sensitive Website Fingerprinting Defense. In Proceedings of the 13th Workshop on
Privacy in the Electronic Society (WPES). ACM, Scottsdale, AZ, USA.

Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A Systematic Approach to Developing and Evaluating Website Fingerprinting
Defenses. In Proceedings of the 21st ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, Scottsdale, Arizona, USA.

Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. 2012. Touching
from a distance: website fingerprinting attacks and defenses. In 19th Conference on
Computer and communications security (CCS). ACM, Raleigh, NC, USA, 605-616.
Giovanni Cherubin, Jamie Hayes, and Marc Juarez. 2017. Website Fingerprint-
ing Defenses at the Application Layer. In 17th Privacy Enhancing Technologies
Symposium (PETS). DE GRUYTER, Minneapolis, USA, 186-203.

Wladimir De la Cadena, Daniel Kaiser, Asya Mitseva, Andriy Panchenko, and
Thomas Engel. 2019. Analysis of Multi-path Onion Routing-Based Anonymiza-
tion Networks. In Proceedings of the 33rd Anual IFIP Conference on Data and
Applications Security and Privacy (DBSec). Springer, Charleston, SC, USA.
Roger Dingledine and Nick Mathewson. 2019. Tor Protocol Specification. https:
//gitweb.torproject.org/torspec.git/tree/tor-spec.txt. (Accessed: January 2020).
Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
Generation Onion Router. In 13th Conference on USENIX Security Symposium.
USENIX Association, San Diego, CA, USA, 303-320.

Kevin Dyer, Scott Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012. Peek-
a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail. In
Proceedings of the 33rd IEEE Symposium on Security and Privacy (S&P). IEEE, San
Francisco, CA, USA.

Roy T. Fielding, Yves Lafon, and Julian F. Reschke. 2014. Hypertext Transfer
Protocol (HTTP/1.1): Range Requests. https://tools.ietf.org/html/rfc7233.

Roy T. Fielding and Julian F. Reschke. 2014. Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. https://tools.ietf.org/html/rfc7231.

Open]JS Foundation. 2020. Node.js. https://nodejs.org/en/. (Accessed: March
2020).

Ian Goldberg. 2019. Network-Based Website Fingerprinting. https://tools.ietf.
org/html/draft-wood-privsec-wfattacks-00. (Accessed: August 2019).

Jiajun Gong and Tao Wang. 2020. Zero-delay Lightweight Defenses against
Website Fingerprinting. In 29th USENIX Security Symposium. USENIX Association,
Boston, MA, USA.

Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In Proceedings of the 25th USENIX conference
on Security Symposium. USENIX Association, Austin, TX, USA.

Sébastien Henri, Ginés Garcia-Avilés, Pablo Serrano, Albert Banchs, and Patrick
Thiran. 2020. Protecting against Website Fingerprinting with Multihoming.
In Proceedings on Privacy Enhancing Technologies (PoPETS). Sciendo, Montreal,
Canada.

Rob Jansen, Tavish Vaidya, and Micah Sherr. 2019. Point Break: A Study of
Bandwidth Denial-of-Service Attacks against Tor. In Proceedings of the 28th
USENIX conference on Security Symposium. USENIX Association, Santa Clara,
CA.

Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. 2014.
A Critical Evaluation of Website Fingerprinting Attacks. In Proceedings of the
21st ACM SIGSAC Conference on Computer and Communications Security (CCS).
ACM, Scottsdale, AZ, USA.

Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright.
2016. Toward an Efficient Website Fingerprinting Defense. In Proceedings of the
21st European Symposium on Research in Computer Security (ESORICS). Springer,
Heraklion, Greece.

Sheharbano Khattak, Taria Elahi, Laurent Simon, Colleen M. Swanson, Steven]J.
Murdoch, and Ian Goldberg. 2016. SoK: Making Sense of Censorship Resis-
tance Systems. In 16th Privacy Enhancing Technologies Symposium (PETS). DE
GRUYTER, Darmstadt, Germany, 37-61.

Wladimir De la Cadena, Asya Mitseva, Jan Pennekamp, Jens Hiller, Fabian Lanze,
Thomas Engel, Klaus Wehrle, and Andriy Panchenko. 2019. POSTER: Traffic
Splitting to Counter Website Fingerprinting. In 26th Conference on Computer and
Communications Security (CCS). ACM, London, UK, 2533-2535.

[26

[27

[28

[30

(31

[32

[33

[34

[35

[36

(37

[38

[39

[40

[41

[42

[44]

[45]

[48

Shuai Li, Huajun Guo, and Nicholas Hopper. 2018. Measuring Information
Leakage in Website Fingerprinting Attacks and Defenses. In 25th Conference on
Computer and Communications Security (CCS). ACM, Toronto, Canada, 1977-
1992.

Marc Liberatore and Brian Levine. 2006. Inferring the Source of Encrypted
HTTP Connections. In Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS). ACM, Alexandria, VA, USA.

Isis Lovecruft, George Kadianakis, Ola Bini, and Nick Mathewson. 2019. Tor
Guard Specification. https://gitweb.torproject.org/torspec.git/tree/guard-spec.txt.
(Accessed: January 2020).

David Lu, Sanjit Bhat, Albert Kwon, and Srinivas Devadas. 2018. DynaFlow: An
Efficient Website Fingerprinting Defense Based on Dynamically-Adjusting Flows.
In 17th Workshop on Privacy in the Electronic Society (WPES). ACM, Toronto,
Canada, 109-113.

Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky K. C. Chang, and
Roberto Perdisci. 2011. HTTPOS: Sealing information leaks with browser-side
obfuscation of encrypted flows. In Proceedings of the 18th Anual Network and
Distributed System Security Symposium (NDSS). Internet Society, San Diego, CA,
USA.

Nick Mathewson. 2019. New Release: Tor 0.4.0.5. https://blog.torproject.org/new-
release-tor-0405. (Accessed: January 2020).

Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: A Bespoke Website
Fingerprinting Defense. In Proceedings of the 13th Workshop on Privacy in the
Electronic Society (WPES). ACM, Scottsdale, Arizona, USA.

Se Eun Oh, Saikrishna Sunkam, and Nicholas Hopper. 2019. p!-FP: Extraction,
Classification, and Prediction of Website Fingerprints with Deep Learning. In 19th
Privacy Enhancing Technologies Symposium (PETS). DE GRUYTER, Stockholm,
Sweden, 191-209.

Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan Pennekamp,
Klaus Wehrle, and Thomas Engel. 2016. Website Fingerprinting at Internet Scale.
In 23rd Annual Network and Distributed System Security Symposium (NDSS).
Internet Society, San Diego, CA, USA.

Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. 2011.
Website Fingerprinting in Onion Routing Based Anonymization Networks. In
Proceedings of the 10th Annual ACM Workshop on Privacy in the Electronic Society
(WPES) (Chicago, Illinois, USA). ACM.

Andriy Panchenko and Johannes Renner. 2009. Path Selection Metrics for
Performance-Improved Onion Routing. In Proceedings of the 9th IEEE/IPSF Sympo-
sium on Applications and the Internet (SAINT). IEEE, Seattle, Washington, USA.
Jan Pennekamp, Jens Hiller, Sebastian Reuter, Wladimir De la Cadena, Asya
Mitseva, Martin Henze, Thomas Engel, Klaus Wehrle, and Andriy Panchenko.
2019. Multipathing Traffic to Reduce Entry Node Exposure in Onion Routing. In
Proceedings of the 27th annual IEEE International Conference on Network Protocols
(ICNP). IEEE, Chicago, IL, USA.

Mike Perry. 2011. Experimental Defense for Website Traffic Fingerprinting. https:
//blog.torproject.org/experimental- defense- website-traffic-fingerprinting. (Ac-
cessed: January 2020).

The Tor Project. 2020. Tor Browser. https://www.torproject.org/projects/
torbrowser.html.en. (Accessed: March 2020).

The Tor Project. 2020. Tor Metrics. https://metrics.torproject.org/. (Accessed:
March 2020).

The Tor Project. 2020. Tor Rendezvous Specification — Version 3. https://gitweb.
torproject.org/torspec.git/tree/rend-spec-v3.txt.

Tobias Pulls and Rasmus Dahlberg. 2020. Website Fingerprinting with Website
Oracles. In Proceedings on Privacy Enhancing Technologies (PoPETS). Sciendo,
Montreal, Canada.

Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom van Goethem, and Wouter
Joosen. 2018. Automated Website Fingerprinting through Deep Learning. In
Proceedings of the 25th Network and Distributed System Security Symposium (NDSS).
Internet Society, San Diego, CA, USA.

Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. 2018. Deep Fin-
gerprinting: Undermining Website Fingerprinting Defenses with Deep Learning.
In Proceedings of the 25th ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS). ACM, Toronto, ON, Canada.

Payap Sirinam, Nate Mathews, Mohammad Saidur Rahman, and Matthew Wright.
2019. Triplet Fingerprinting: More Practical and Portable Website Fingerprinting
with N-Shot Learning. In Proceedings of the 26th ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM, London, United Kingdom.
Michael Carl Tschantz, Sadia Afroz, Anonymous, and Vern Paxson. 2016. SoK:
Towards Grounding Censorship Circumvention in Empiricism. In Symposium on
Security and Privacy (S&P). IEEE, San Jose, CA, USA, 914-933.

Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
Effective Attacks and Provable Defenses for Website Fingerprinting. In Proceed-
ings of the 24th USENIX conference on Security Symposium. USENIX Association,
San Diego, CA, USA.

Tao Wang and Ian Goldberg. 2013. Improved Website Fingerprinting on Tor. In
Proceedings of the 12th ACM Workshop on Workshop on Privacy in the Electronic

https://github.com/TrafficSliver
https://www.alexa.com/
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7231
https://nodejs.org/en/
https://tools.ietf.org/html/draft-wood-privsec-wfattacks-00
https://tools.ietf.org/html/draft-wood-privsec-wfattacks-00
https://gitweb.torproject.org/torspec.git/tree/guard-spec.txt
https://blog.torproject.org/new-release-tor-0405
https://blog.torproject.org/new-release-tor-0405
https://blog.torproject.org/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/experimental-defense-website-traffic-fingerprinting
https://www.torproject.org/projects/torbrowser.html.en
https://www.torproject.org/projects/torbrowser.html.en
https://metrics.torproject.org/
https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt
https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt

Society (WPES). ACM, Berlin, Germany.

[49] Tao Wang and Ian Goldberg. 2015. On Realistically Attacking Tor with Web-
site Fingerprinting. In Proceedings on Privacy Enhancing Technologies (PoPETS).
Philadelphia, PA, USA.

[50] Tao Wang and Ian Goldberg. 2017. Walkie-Talkie: An Efficient Defense Against

Passive Website Fingerprinting Attacks. In Proceedings of the 26th USENIX con-

ference on Security Symposium. USENIX Association, Vancouver, BC, Canada.

Charles Wright, Scott Coull, and Fabian Monrose. 2009. Traffic Morphing: An

Efficient Defense Against Statistical Traffic Analysis. In Proceedings of the 16th

Anual Network and Distributed System Security Symposium (NDSS). Internet

Society, San Diego, CA, USA.

[52] Junhua Yan and Jasleen Kaur. 2018. Feature Selection for Website Fingerprint-
ing. In 18th Privacy Enhancing Technologies Symposium (PETS). DE GRUYTER,
Barcelona, Spain, 200-219.

[53] L. Yang and F. Li. 2015. mTor: A Multipath Tor Routing Beyond Bandwidth
Throttling. In IEEE Conference on Communications and Network Security (CNS).
IEEE, Florence, Italy.

[51

A OPTIMIZING BATCHED WEIGHTED
RANDOM STRATEGY

An important design choice for our novel splitting scheme BWR is
the size of each batch. Since some state-of-the-art WFP attacks rely
on features extracted from consecutive sequences of 30 to 40 Tor
cells within a given traffic trace [19, 47], we argue that the number
n of cells in a single batch should lie around those values in order
to disturb useful features. Based on this, we investigated different
intervals for n by using five entry ORs for each user’s multipath
connection and summarize the classification accuracy obtained for
each of these intervals in a closed-world scenario in Table 5.

Table 5: Accuracy (in %) for different intervals of the batch
size n needed in our BWR strategy.

Batch size n| [30,40] [30,90] [50,70] [60,80] [90,120]
k-FP 1605 17.98 1346 18.00 17.76
DF 836 795 658 820 6.70

CUMUL | 670 650 463 8.44 7.31
k-NN 475 450 315 520 4.80

We present the experimental results for four state-of-the-art
classifiers, k-FP, CUMUL, k-NN, and DF. As we can see, the most
promising results were obtained when uniformly sampling n from
the interval n € [50,70]. Hence, we consider this interval as a good
choice and use it for all experiments in our work.

B SUPPORT OF HTTP RANGE OPTION

In its second mode of operation, TrafficSliver-App first needs to
determine whether an HTTP request can be decomposed into multi-
ple partial requests by verifying several conditions. To this end, the
response corresponding to a given request should possess a non-
empty body. This does not apply, for instance, for an HTTP HEAD
request and, thus, such requests cannot be split by our defense.
Next, the request should be idempotent, i.e., if the same request is
sent multiple times, this does not result in different responses [15].
Otherwise, consecutive partial requests might not correctly fetch
parts of the same object. An HTTP POST method is an example of
a non-idempotent request and, thus, does not support the range
option. Although an HTTP PUT request is idempotent and the
response corresponding to it can have a body, the range option is
not supported for this type of request. A reason for this is that the
body constitutes a confirmation of data uploaded or modified on

Table 6: HTTP methods whose resources are not splittable.

HTTP Number of Fraction of non-
method requests splittable resources [%]
HEAD 379 0.038
GET 942,134 23.89
PATCH 4 0.0004
PUT 154 0.016
POST 41,327 4.1742
OPTIONS 6,050 0.6111
DELETE 3 0.0003

the server side only, i.e., it does not contain any resource download.
Thus, the range option is applicable only for HTTP GET requests
and is supported for them only. Furthermore, the web server needs
to support the range option requested via an HTTP GET method.
Many web servers do not support the range option as it is only
beneficial for the user. On the server side, the use of the range
option produces additional overhead as it increases the number of
requests to be handled for the same amount of data. Moreover, the
server should not enforce a compression for the given resource.
Due to the incompatibility of the range option with compression,
our defense disables a potential compression for each requested
resource. Nevertheless, some web servers ignore this and still com-
press the data. Finally, the size of each requested resource should
be known to correctly apply one of our splitting strategies (see
Section 6). Otherwise, our defense is not able to create multiple
partial requests.

In the following, we evaluate the extent to which the range op-
tion is adopted on the Web. To do this, we considered Alexa Top list
of the 100,000 most popular sites. We used the same experimental
setup presented in Section 7 to automatically visit the index pages of
these websites. We kept track of the HTTP requests and responses
exchanged during each page load and used them to retrieve infor-
mation about the size, the type, and the location of the requested
resources as well as the status codes indicating the accessibility
and splittability of each resource. We excluded web objects whose
HTTP responses indicated either a redirection or a client or server
error. In total, we collected 3,943,239 unique web resources after
visiting 60,054 accessible sites. In particular, 2,953,188 (74.89%) from
the collected web resources supported the HTTP range option.

Since our defense is able to split only those resources that are
requested via HTTP GET method, we further examined the type
of methods of those requests whose resources are not splittable.
Table 6 summarizes the obtained results. Based on the statistics
presented in the table, we observe that non-GET requests represent
only 1.22% of all sent requests. This, in turn, indicates the high
degree of applicability of our defense. On the other hand, still 23.89%
of all GET requests point to a non-splittable resource.

Unlike HTTPOS [30], the second mode of operation of our de-
fense depends mainly on the percentage of splittable web objects
within a singe website. Therefore, we further measured the support
of the HTTP range option for requests within a single website. To
do this, we computed the support rate either by taking into account
all resources needed to load a given website or by considering only
those resources which belong to the website. Websites often share

100
90| vess }
) S S E R ——

70| N
60|
50|

40
0L |— Number of resources (internal + external)

- - - Number of resources (internal only)

Fraction of websites [%]

200 Resource sizes (internal + external)

10 1= - - - Resource sizes (internal only)
I I I I I I I 1 1
0 10 20 30 40 50 60 70 80 90 100

Fraction of splittable resources [%]

Figure 8: Complementary cumulative distribution function
(CCDF) for the fraction of splittable resources.

a significant part of their external embedded content. Therefore,
even if external resources within a website cannot be split, they
may not reveal any specific patterns for this website as the same
resources need to be fetched for many other websites. We com-
puted the support rate either by counting the number of splittable
(internal) resources and dividing it by the total number of (internal)
resources needed to load a given website or by summing the sizes
of the splittable (internal) resources and dividing it by the total size
of all (internal) resources of a website. Both metrics are equally
relevant to evaluate the feasibility of our defense in practice. Even
if the support of HT TP range requests with respect to the number
of splittable resources is limited, the size of the splittable resources
may represent a significant part of the whole website. This, in turn,
means that even if we have a large number of non-splittable re-
sources, they are too small and may be transmitted through a single
Tor cell without a need to be split.

Figure 8 shows the minimum support rate of the HTTP range
option when considering all resources within a website and only
those resources belonging to a given website. Here, we observe that
the support rate in terms of resource sizes is significantly higher
than the support rate in terms of the number of resources. While
50% of the websites contain at least 80% splittable resources, 80%

of the websites have splittable resources representing at least 80%
of the total website size. On the other hand, we need to consider
the fact that we do not always have a size information for each
collected resource. Overall, we observed 242,899 (6.16%) from all
collected web resources for which we did not obtain any data about
their size. When we consider only the resources belonging to a
given website, we see that 60% of the websites contain at least 90%
splittable internal resources. In terms of resources sizes, 80% of the
websites have splittable resources representing at least 90% of the
total website size. This indicates the higher percentage of splittable
resources, which contain unique patterns for a given website.

C AUTHORS’ CONTRIBUTIONS

Both TrafficSliver defenses were proposed and designed by Andriy
Panchenko. The former version of TrafficSliver-Net was imple-
mented by Daniel Forster under guidance of Andriy Panchenko.
Further design details for TrafficSliver-Net were provided by Jens
Hiller, Jan Pennekamp, Wladimir De la Cadena, and Asya Mitseva.

The current version of TrafficSliver-Net was reimplemented by
Sebastian Reuter under guidance of Jens Hiller. Bandwidth and

latency performance evaluation of both TrafficSliver defenses and
comparison with related work was performed by Wladimir De la
Cadena with the support of Asya Mitseva. Complementary net-
work performance of TrafficSliver-Net was evaluated by Sebastian
Reuter under guidance of Jens Hiller. The traffic-splitting strategies
for TrafficSliver-Net were designed and implemented by Wladimir
De la Cadena in consultation with Andriy Panchenko and Asya
Mitseva. The training strategies for multiple malicious entry ORs
were suggested by Wladimir De la Cadena in consultation with
Andriy Panchenko, Asya Mitseva, Jens Hiller, and Jan Pennekamp.
TrafficSliver-App was implemented by Julian Filter under guidance
of Andriy Panchenko and Asya Mitseva and further extended by
Asya Mitseva. All traffic traces necessary for the evaluation were
collected by Asya Mitseva. The experiments with WFP classifiers
were conducted by Wladimir De la Cadena. The manuscript was
written by Asya Mitseva and Andriy Panchenko. It was further
reviewed by most and approved by all authors.

	Abstract
	1 Introduction
	2 Threat Model
	3 Related Work
	4 TrafficSliver at Network Layer
	5 TrafficSliver at Application Layer
	6 Our Traffic Splitting Strategies
	7 Experimental Setup
	8 Evaluation and Discussion
	8.1 Analysis of Our Network-layer Defense
	8.2 Analysis of Our Application-layer Defense
	8.3 Obfuscation of Most Informative Features
	8.4 Overhead & Comparison to Prior Defenses
	8.5 Discussion and Limitations

	9 Conclusion
	References
	A Optimizing Batched Weighted Random Strategy
	B Support of HTTP Range Option
	C Authors' Contributions

