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Abstract. NIST’s ECC standards create (1) unnecessary losses of sim-
plicity, security, and speed in ECC implementations and (2) unnecessary
tensions between simplicity, security, and speed in ECC implementations.

1 Introduction

The poor user is given enough rope with which to hang himself—
something a standard should not do. —Rivest, 1992 [50],
commenting on the NIST/NSA “DSA” proposal

NIST’s standards for elliptic-curve cryptography (ECC) consist of

• NSA’s choices of primes, such as the “P-256 prime” 2256−2224+2192+296−1;
• NSA’s choices of curves modulo those primes, such as “NIST P-256”, the

curve y2 = x3 − 3x + 41058363725152142129326129780047268409114441015993725554835256314039467401291

modulo the P-256 prime;
• NSA’s choices of coordinates for transmitting points on those curves, such

as “uncompressed short Weierstrass coordinates” (x, y) for NIST P-256;
• NSA’s choices of computations to be used inside implementations, such as

“addition-subtraction methods” for NIST P-256; and
• NSA’s choices of protocols using these curves, such as the “ECDSA” signature

algorithm.

NIST’s FIPS 186-4 specifies the choices of primes and curves, and refers to ANSI
X9.62 for the choices of coordinates, computations, and protocols. FIPS 186-4
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is a “Digital Signature Standard” but the curves are also used in non-signature
protocols, notably ECDH.

1.1. Potential problems with the NIST ECC standards. News reports
in September 2013 [44] revealed that NSA had a $250 million/year program
designed to “make [systems] exploitable through SIGINT collection”; in partic-
ular, to “insert vulnerabilities” into systems and “influence policies, standards
and specification for commercial public key technologies”. The reports indicated,
as an example, that NIST’s standard “Dual EC” elliptic-curve random-number
generator was backdoored by NSA. This prompted extensive public discussion
of whether vulnerabilities could have been somehow inserted not merely into
NIST’s standards for elliptic-curve random-number generation but also into
NIST’s much more widely used standards for elliptic-curve cryptography.

The Dual EC vulnerability is exploitable only by attackers in possession of a
secret back-door key. The news reports make reasonably clear

• that NSA possesses this key and
• that NSA does not have a stellar track record of keeping secrets;

it is therefore easy to imagine many different attackers having copies of the key.
We have seen some commentators speculating that NSA inserts vulnerabilities
into systems only if those vulnerabilities have secret back-door keys, but we have
seen no evidence to support this speculation.

The risk of an intentional vulnerability is particularly difficult to assess. One
hopes that the extensive public study of ECC has been sufficiently comprehen-
sive, and that all curves passing public security criteria are in fact secure; if this
is true then the choice of a curve cannot create a vulnerability. However, it is
possible that this hope is incorrect, and that the curve generator is aware of
security variations among these curves. A curve generator with the flexibility
to choose from among a pool of N curves can turn a curve vulnerability with
probability ε into a curve vulnerability with probability 1− (1− ε)N ≈ Nε (as-
suming statistical independence). It is entirely possible that Nε is large even if
ε is small.

Even worse, N is surprisingly high, as shown in our paper “How to manipulate
curve standards: a white paper for the black hat” [12] with Chou, Chuengsatian-
sup, Hülsing, Lambooij, Niederhagen, and van Vredendaal. The examples in that
paper3 illustrate that claims of protection against backdoors need to be carefully
studied, just like other security claims. It would be particularly embarrassing if,
e.g., NIST adopts some half-baked idea for using “verifiably random” Bitcoins
to generate curves, and a subsequent study then shows that manipulating those
Bitcoins would have been well within the budget of today’s attackers.

1.2. Definite problems with the NIST ECC standards. We are concerned
that attention to the possibility of back doors is distracting NIST from what is
definitely going wrong with NIST’s ECC standards. Most importantly, NIST’s
ECC standards create unnecessary complexity in ECC implementations. This
unnecessary complexity is important because it

3 We incorporate that paper by reference into our comments to NIST.
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• scares away implementors,
• reduces ECC adoption,
• interferes with optimization,
• keeps ECC out of small devices,
• scares away auditors,
• interferes with verification, and
• creates ECC security failures.

It is theoretically possible to implement NIST’s ECC standards in a secure way,
but it is unnecessarily difficult—even in situations where there are no perfor-
mance constraints. Even worse, the path to a secure implementation is littered
with unnecessary traps: ways that simpler implementations seem to work but
are not in fact secure. Implementors naturally try to reduce complexity, and end
up falling into these traps, compromising security.

Are we saying that cryptographers should always apply every imaginable sim-
plification? Of course not. For example:

• ECB is simpler than GCM. Should GCM users switch to ECB? No: that
would be an oversimplification. The problem here is that ECB doesn’t au-
thenticate and doesn’t securely encrypt.

• Multiplicative groups are simpler than elliptic-curve groups. Should ECC
users switch to multiplicative groups? No: that would be an oversimplifica-
tion. The problem here is that multiplicative groups are vulnerable to index
calculus. This produces bigger keys and slower computations; this also makes
the security analysis more difficult and less stable, reducing confidence.

As these examples illustrate, the cryptographer’s top priority is security, and the
cryptographer’s second priority is to meet the user’s performance requirements.
Simplicity is only the third priority.

Sometimes, starting from examples of oversimplification damaging security or
speed, people say “Simplicity damages security” or “Simplicity damages speed”
or “Simplicity in cryptography is bad”. These are wild overgeneralizations, often
used to cover up deficient analyses of speed and security. Many simplifications
don’t hurt security at all and don’t hurt speed at all. In fact, the simplicity of
next-generation ECC contributes to security and contributes to speed.

The next five sections of this document analyze ways that simplicity, security,
and speed are compromised by NSA’s choices of primes, curves, coordinates,
computations, and protocols. The remaining sections of this document answer
various questions that were specifically asked by NIST.

2 Protocols

The following high-level description of ECDH is uncontroversial. There is a stan-
dard base point B on a standard elliptic curve E over a standard finite field.
Alice generates a secret integer r and a corresponding public key rB. Bob gen-
erates a secret integer s and a corresponding public key sB. Alice computes rsB
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as r · sB, and Bob computes the same rsB as s · rB. Some sort of hash of this
shared secret rsB is used to encrypt and authenticate data.

For signatures there are many more choices to make at the same level of ECC
protocol description. Some amount of extra complexity seems unavoidable,4 but
poor choices add unnecessary further complexity, along with damaging speed
and security.

The rest of this section focuses on the details of two signature protocols:
ECDSA, which is part of NIST’s standards, and EdDSA, which we introduced
in a paper [15] with Duif, Schwabe, and Yang and generalized in a paper [17]
with Josefsson, Schwabe, and Yang.5 See [10] for a step-by-step explanation of
how to obtain EdDSA through modifications to the original ElGamal signature
system.6

In EdDSA, the verifier checks the equation SB = R + H(R,A,M)A. Here
B is a standard base point as above; H is a standard hash function; A is the
signer’s public key; R is a curve point included in the signature; S is an integer
included in the signature; and M is the message being verified.

In ECDSA, the verifier checks the equation H(M)B + x(R)A = SR. This
forces the signer to perform a division, damaging speed and simplicity. It also
forces the verifier to perform a triple-scalar multiplication, or to instead check
(H(M)/S)B + (x(R)/S)A = R, again damaging speed and simplicity.

An ECDSA signature (R,S) could be encoded, without any change of security,
as (R,S′) where S′ = S/H(M). The verifier would then check the equation
B +H ′(R,M)A = S′R, where H ′(R,M) = x(R)/H(M). This view shows that,
from a security perspective, moving from ECDSA to EdDSA means

• putting S in front of B rather than R;
• replacing H ′ with a conventional hash function H; and
• including A as an extra hash input.

The first change was introduced by Schnorr and eliminates divisions. The second
change eliminates the multiplicative structure of H ′, improving security as dis-
cussed in the next paragraph. The third change alleviates concerns that several
public keys could be attacked simultaneously.

In ECDSA, an attacker who finds a collision in H also finds a collision in H ′,
breaking the system. EdDSA is collision-resilient: hash-function collisions do not
break the system.

Schnorr used collision resilience as justification for taking a hash function with
smaller output, and then used this to save some space in signatures, replacing

4 This complexity is created by the basic data flow in signatures, where a signature is
sent through a one-way communication channel to a receiver. A receiver who has a
two-way communication channel with the sender can skip signatures and use ECDH
to achieve even better integrity protection, guaranteeing that the sender is vouching
for the data now (“freshness”) rather than at some indeterminate time in the past.
ECDH also easily provides confidentiality protection, protection for communication
in the opposite direction, etc.

5 We incorporate those papers by reference into our comments to NIST.
6 We incorporate that blog post by reference into our comments to NIST.
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R with the H output. EdDSA instead uses collision resilience as an extra line
of defense, uses R in signatures to allow fast batch verification, and takes a
double-size H output.

In all of these systems, the signer generates R as rB, where r is a one-time
secret scalar. EdDSA generates r by deterministically hashing a secret together
with M , so randomness is not used after key generation. This makes the signing
procedure much easier to test and audit. This idea was proposed by Barwood
[6] and Wigley [52] in 1997, many years before poor generation of r revealed the
Sony PlayStation 3 ECDSA signing key [26] and Bitcoin secret keys [22].

3 Computations of multiples of points

There is a long history of successful timing attacks against cryptographic soft-
ware, and in particular ECC software. For example, the very recent paper [2]
demonstrates successful recovery, through timing-based side channels, of a secret
key used by OpenSSL’s ECDSA implementation7 for just 6 signatures.

Evidently constant-time ECC software is critical for ECC security. This has
an impact on several layers of choices inside ECC standards.

There are other important side channels. We have chosen to highlight tim-
ing because timing attacks are particularly dangerous. Timing is visible through
networks; timing is visible to untrusted code running on the same machine (for
example, in browsers); timing is unaffected by typical physical-security mecha-
nisms. Analysis of other side channels is more complicated but generally sup-
ports the same conclusions regarding the choice of ECC mechanisms: see, e.g.,
the hardware-oriented survey [32] by Fan, Guo, De Mulder, Schaumont, Preneel,
and Verbauwhede.

3.1. The Montgomery ladder. Curve25519 [9] is the Montgomery curve y2 =
x3 +Ax2 +x over Fp, where p = 2255− 19 and A = 486662. Each curve point Q
has an x-coordinate X0(Q) defined as follows: if Q = (x, y) then X0(Q) = x; if
Q is the point at infinity then X0(Q) = 0. Here is a spectacularly simple method
of single-scalar x-coordinate multiplication on Curve25519:

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(255)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

7 The attack was demonstrated against Bitcoin signatures, which use a non-NIST
curve, but the attack strategy should also work for other curves.
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The inputs are an integer n ∈
{

0, 1, 2, . . . , 2255 − 1
}

and the x-coordinate
x1 = X0(Q) of a curve point Q. The output is exactly X0(nQ). The operations
+, *, etc. are constant-time arithmetic operations in Fp. The cswap function
performs a constant-time conditional swap.

This scalar-multiplication method, the “Montgomery ladder”, works for all
inputs, as shown in [9]. There is no need to check for any special cases. The
proofs in [9] apply to any Montgomery curve with a unique point of order 2: any
curve By2 = x3 + Ax2 + x over any prime field Fp where p ≥ 5, B 6= 0, and
A2 − 4 is non-square. One can also change 255 to another number in the code,
allowing that number of bits in the scalar n. With some extra lines of code one
can also compute the y-coordinate of nQ given the y-coordinate of Q, but (as
pointed out by Miller in [43]) this extra complexity is not necessary for ECDH.

X25519 is a widely deployed ECDH system8 using Curve25519, with these
x-coordinates encoded as 32-byte public keys in a straightforward way. Practi-
cally all X25519 implementations use the Montgomery ladder to compute shared
secrets. The Montgomery ladder is extremely fast (and fits into small hardware),
when the pieces of the computation are appropriately optimized. There are many
other ways to compute X25519 shared secrets, but none of them are simpler or
faster than the Montgomery ladder, so there is no incentive for X25519 imple-
mentations to use them.

Some parts of the literature, instead of presenting a constant-length ladder
as above, present a variable-length ladder, starting from the top bit that is set
in the scalar. Brumley and Tuveri in [25] demonstrated remote extraction of
secret keys through timings of OpenSSL’s binary-field ECDSA implementation;
this implementation used a ladder for multiplication by the one-time scalar, and
thus leaked the fact that some scalars were particularly small, allowing the attack
to recover the long-term secret key by lattice techniques. Small information leaks
regarding ECDH keys do not seem to be as damaging, but we recommend a policy
of systematically eliminating all timing leaks, rather than giving the auditor the
tricky task of assessing the impact of many small leaks.

Several years before [25], X25519 already specified scalars n that always have
2254 ≤ n < 2255, so a variable-length Montgomery ladder still ends up taking
constant time. X25519 implementors are also encouraged in several ways to focus
on implementing X25519, rather than to try to write “generic” implementations
that handle multiple curves. One effect of this focus is that X25519 implementors
have a natural incentive to avoid variable-length ladders: a variable-length ladder
might seem simplest for a “generic” implementation but a length-255 ladder is
obviously simplest for an X25519 implementation. To summarize, the X25519
ecosystem was proactively designed to discourage timing leaks.

3.2. Edwards curves. The simplest way to generate X25519 public keys is
to reuse the Montgomery ladder to multiply the secret scalar by the standard
base point B. It is well known, however, that one can save a factor of roughly

8 Originally, in [9], this ECDH system was called Curve25519, but having a separate
name for the ECDH system and the curve has turned out to be helpful.
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3 in CPU time by instead computing this multiple of B as a sum of various
precomputed multiples of B.

We emphasize that simply reusing the Montgomery ladder for key genera-
tion is fast enough for most ECDH applications. Obviously one should not add
complexity (and code size) for a speedup that users won’t actually notice. To
find applications that care about the cost of ECDH key generation, one needs
to find applications where ECDH is a bottleneck and each ECDH key is reused
only a very small number of times. A key used as a long-term identifier, or an
ephemeral server key reused for two hours,9 involves mainly shared-secret com-
putations, not key generation. Even in the rather extreme situation of a key
being generated and used just once, saving a factor of 3 in key generation means
saving a factor of just 1.5 in total time.

Furthermore, there are timing leaks in all of the simplest ways to work with
tables of precomputed multiples of B. Consider, for example, a table containing
B, 2B, 4B, . . . , 2254B. Simply scanning for the bits of n that are set, and adding
the corresponding table entries, will (obviously) leak the Hamming weight of n
through total time, and will (less obviously) leak all bits of n through higher-
bandwidth timing channels such as cache-timing attacks and branch-prediction
attacks. One way to protect this computation is to read every table entry, using
conditional moves to replace irrelevant results with 0, but this is not as simple
and fast as the original computation. See, e.g., [15] for the work needed to write
reasonably fast constant-time key-generation code.

At a lower level, the implementor is faced with the problem of how to add two
points. The Montgomery x-coordinate is not enough information to allow general
additions.10 The simplest solution is to use a different curve shape, “complete
Edwards curves”, which we published in [18] in 2007. A complete Edwards curve
is a curve x2 + y2 = 1 + dx2y2 where d is non-square. The sum of two points
(x1, y1) and (x2, y2) on the curve is(

x1y2 + x2y1
1 + dx1x2y1y2

,
y1y2 − x1x2

1− dx1x2y1y2

)
;

the denominators here are always nonzero. Various optimizations reduce the cost
of each addition below 10 field multiplications.

The problem of general additions also appears in all of the signature systems
described in Section 2. Complete Edwards curves are again the simplest solution.
The Ed25519 signature system uses a complete Edwards curve for key generation,
signing, and signature verification.

There is a slight speedup from switching to the “dual” addition formulas
introduced by Hisil, Wong, Carter, and Dawson in [37], but these formulas have
the disadvantage of producing incorrect results for some bad inputs. Most of the
cryptographic literature assumes that computations are performed correctly, and
the occasional analyses of the consequences of incorrect computations often show

9 [27, Section 4.2] reported that Microsoft’s SChannel works this way.
10 To be precise: Given X0(Q) and X0(R) one can, with some effort, compute all

possibilities for X0(Q + R). Usually there are exactly two possibilities.
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that those computations can do tremendous damage. With these “dual” formulas
one therefore has to be very careful

• to have the implementation check for bad inputs (in constant time!) and
handle them appropriately; or, alternatively,

• to prove that the higher-level scalar-multiplication strategy cannot produce
bad inputs; or, alternatively,

• to prove that the higher-level scalar-multiplication strategy together with
the randomization of inputs has negligible chance of producing bad inputs.

Given the difficulty that this produces for auditors, together with the rarity of
applications that will notice this slight speedup, we recommend that implemen-
tors avoid taking the “dual” approach to additions.

3.3. The NSA/NIST approach. FIPS 186-4 points to ANSI X9.62 for scalar-
multiplication algorithms. ANSI X9.62 specifies11 a single-scalar-multiplication
algorithm (Appendix D.3.2) whose inner loop consists of

• a doubling,
• an addition if the scalar satisfies a particular property (probability 1/4), and
• a subtraction if the scalar satisfies another property (also probability 1/4).

The underlying addition algorithm (Appendix B.3) has five different cases.
Adding further complexity to the scalar-multiplication method, ANSI X9.62

cites “several variations of this method which can be used to speed up the compu-
tations”. Even in applications where the original algorithm provides acceptable
speed, the algorithm is obviously vastly more complex than the Montgomery
ladder, and has many more traps for implementors. For example, random tests
of this scalar-multiplication algorithm will exercise only two of the cases in the
addition algorithm, so they won’t protect an implementor who omits or mangles
the other cases. Furthermore, both levels of algorithms in ANSI X9.62 are full
of timing leaks.

It is of course possible to build a correct constant-time implementation (and
the literature explains various ways to make this somewhat less painful than it
might seem at first, for example by reducing the number of cases). However,
within the space of all possible implementations, a secure implementation is
surrounded in all directions by traps for the implementor: implementations that
are faster but leak information through timing, implementations that pass typical
tests but that are wrong for some attacker-supplied inputs, etc. The problem
here is much more severe than the problem described above for “dual” addition
formulas: the problem before was a slight tension between speed and security,
while the problem here is a much stronger tension between speed and security,
combined with a strong tension between simplicity and security.

One of the core choices in ANSI X9.62 was to use what are called “Jaco-
bian coordinates” to represent points inside these computations. (This means

11 The citations here are to the September 1998 draft. Subsequent drafts might have
different material but aren’t easy to find online and are unlikely to be checked by
most implementors.
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using (X,Y, Z) to represent a point (x, y) = (X/Z2, Y/Z3) on a “short Weier-
strass curve” y2 = x3 + ax + b.) This choice was publicly justified for speed
reasons: IEEE P1363, a very similar standard developed in parallel by an over-
lapping team, claims that this choice provides “the fastest arithmetic on elliptic
curves”. However, all known methods for addition in Jacobian coordinates (and
in the closely related “projective coordinates” for short Weierstrass curves),
whether constant-time or not, are considerably slower and more complicated
than constant-time addition on complete Edwards curves.

It is easy to explain why the standards don’t mention Edwards curves: the
standards were developed before Edwards curves were published. But it is much
more difficult to explain why the standards don’t mention the Montgomery lad-
der for single-scalar multiplication. The Montgomery ladder was published in
the 1980s, and has always been simpler, faster, and less error-prone than the
techniques recommended in the standards. To justify ignoring the Montgomery
ladder it seems that one would have to (1) focus purely on speed without regard
to simplicity, and also (2) focus purely on signatures without regard to ECDH.

4 Coordinates sent through the network

Section 3 described Montgomery curves, complete Edwards curves, and short
Weierstrass curves as separate types of curves. However, there are actually
many easy maps between these types of curves, so the choice of coordinates
sent through the network is not dictated by the choice of coordinates used inside
computations.

For example, define p = 2255 − 19 and A = 486662, and recall from Section 3
that Curve25519 is the Montgomery curve y2 = x3+Ax2+x over Fp. It is easy to
see that if (x, y) is a point on this curve then (x+A/3, y) is a point on the short
Weierstrass curve y2 = x3 + ax+ b where a = 1−A2/3 and b = 2A3/27−A/3.
It is just as easy to work backwards from (x+A/3, y) to (x, y).

The map from (x, y) on the Montgomery curve to the corresponding point
(x+A/3, y) on the short Weierstrass curve is an “isomorphism” between curves,
preserving addition of points. An implementor who wants to compute the nth
multiple of a point Q on the short Weierstrass curve can

• invert this isomorphism (i.e., subtract A/3 from the first coordinate) to ob-
tain the corresponding point on the Montgomery curve,

• use the Montgomery ladder to obtain the x-coordinate of the nth multiple
of that point,

• recover the y-coordinate of the nth multiple, and
• apply the isomorphism to obtain nQ.

As this example illustrates, it’s possible for a protocol to use (e.g.) short Weier-
strass curves while computations use (e.g.) Montgomery curves.

As another example, Curve25519 is also isomorphic to the complete Edwards
curve x2 + y2 = 1 + dx2y2 over Fp, where d = 1 − 1/121666. The Ed25519
signature system is specified in terms of this complete Edwards curve, while the
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X25519 ECDH system is specified in terms of the Montgomery curve. X25519
implementors who want faster key generation (see Section 3) use the Edwards
curve for scalar multiplication and then apply the isomorphism to obtain a public
key on Curve25519.

4.1. Invalid-curve attacks and twist security. Jager, Schwenk, and So-
morovsky [39] recently announced a devastating break of “Java implementa-
tions using static EC keys” for TLS. Eight crypto libraries were analyzed, and it
turned out that two of them (Bouncy Castle and Java Crypto Extension) didn’t
check whether incoming points (x, y) were on the curve that they were supposed
to be on.

The attack works as follows. The attacker easily finds a point (x, y) of small
prime order, let’s say order 1009, on another curve over the same field, and
sends that point to the server. The server blithely computes k(x, y) where k is
the server’s secret key; this is the same as (k mod 1009)(x, y). The attacker has
a noticeable chance of correctly guessing k mod 1009, and confirms this guess by
following normal protocol operations using the shared secret (k mod 1009)(x, y),
revealing k mod 1009. If the guess fails then the attacker tries again with another
guess. By varying 1009 the attacker learns k modulo several small primes, and
then easily computes k. The basic idea of this attack was published in 2000 [21]
by Biehl, Meyer, and Müller, as an elliptic-curve adaptation of an idea published
by Lim and Lee.

NIST has frequently asserted that the NIST curves when implemented properly
are not subject to any attack known to the public:

We remain confident in their security and are not aware of any significant
attacks on the NIST curves when used as described in our standards and
implemented correctly.

It is of course true that the implementors could have avoided the attack by
checking whether (x, y) is on the correct curve. The NIST curves don’t have
any points of small order (except for orders dividing the “cofactors”, something
already taken care of by standard “cofactor multiplication”). However, the reality
is that 25% of the implementations in this study weren’t implemented correctly
and didn’t avoid the attack.

The underlying issue is that checking whether input points are on the curve is
considerable extra complexity. Typical tests won’t notice if this check is omitted,
and even highly aggressive tests aren’t effective at figuring out whether this
check is implemented correctly for all inputs.12 It might sound trivial to have
implementors check whether an input (x, y) is on the correct curve, but this is
actually a significant tension between simplicity and security, and this tension
is exactly what led to the success of the attack.

12 One of the OpenSSL bugs announced in 2015 was an error in the point-on-curve test
for a very small fraction of inputs. It still isn’t clear whether this error is exploitable.
One can hope to eliminate all errors in ECC software through formal verification,
and recent work shows considerable progress in this direction; this work is targeting
X25519 implementations precisely because those implementations are so simple.
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X25519 proactively avoids this attack as follows:

• Instead of sending short-Weierstrass (x, y) through the network, send Mont-
gomery x. This choice of coordinates drastically limits the attacker’s choice
of curves: it does not quite force the attacker to send a point on the correct
curve, but the only other possibility is that the attacker sends a point on
what is called “the twist” of the curve.

• Encourage use of the Montgomery ladder. This has many benefits discussed
in Section 3. What matters here is another effect, namely that scalar multi-
plication is computed correctly for all inputs x, both on the original curve
and on the twist.

• Choose a curve so that the curve and the twist each have no points of small
order, except for orders dividing the cofactor.

The Montgomery x is not the only possibility here: there are analogous de-
fenses that instead send the Edwards y. Choosing to send the Edwards y would
slightly simplify implementations that use Edwards coordinates internally. How-
ever, choosing the Montgomery x slightly simplifies implementations that use
the Montgomery ladder internally. These implementations are simpler in the
first place, so the marginal extra simplification is more noticeable. For similar
reasons, it is better to send the Montgomery x than the short-Weierstrass x.

In short, this tension between simplicity and security was and is avoidable
through the choice of ECDH mechanisms. By blaming implementors for this at-
tack, NIST has been refusing to acknowledge its own role in causing the problem.

4.2. Signatures and point compression. As noted in Section 3, the signa-
ture context is more complicated than the ECDH context. Signature verification
uses general point additions; a single coordinate can support a ladder but can’t
support general point additions. It’s possible to arrange signature verification as
addition verification, which can be done with a single coordinate, but this inter-
feres with speed and isn’t particularly simple. Working with both the Edwards
x and y coordinates is simpler.

In this two-coordinate context, ECC standards can and should require com-
pression of the second coordinate. For example, Ed25519 sends the Edwards y
and a single bit specifying x. This saves 32 bytes, sometimes producing a measur-
able speedup. Recovering x from the single bit sometimes produces a measurable
slowdown, but the savings typically outweighs the slowdown. More importantly,
instead of telling implementors to check the whole curve equation, Ed25519 is
telling implementors to check whether x was recovered correctly, i.e., to check an
equation of the form x2 = s. This is considerably less code, considerably reducing
the tension between simplicity and security. It’s also much more fault-tolerant
than checking the curve equation, since it’s checking ` bits derived from ` + 1
bits of attacker input rather than 2` bits of attacker input.

Today’s ECC standards allow compression as an option, but this obviously
isn’t good enough to stop attacks, and it also ends up adding complexity for
implementors.
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4.3. Unified implementations of ECDH and signatures. The bigger pic-
ture of the ECDH+signature ecosystem is that some implementations support
only ECDH, some implementations support only signatures, and some imple-
mentations support both. Using Edwards coordinates for ECDH would slightly
simplify implementations of the third type, but using Montgomery coordinates
for ECDH slightly simplifies implementations of the first type. Implementations
of the first type are spectacularly simple (see Section 3), so slight simplifications
are much more noticeable for them than for implementations of the other types.
We therefore recommend Montgomery coordinates for ECDH, as in X25519.

Using the same prime for signatures and for ECDH is of course helpful for
implementations of the third type. Using isomorphic curves (as X25519 and
Ed25519 do) gives these implementors more options to share code between
ECDH key generation, signing, etc.

5 Curves

Not all elliptic curves are compatible with the next-generation ECC options
explained in previous sections. However, it is very easy to find compatible curves.
Specifically, approximately 25% of all elliptic curves over large prime fields satisfy
the following two conditions:

• The curve has a point of order 4.
• The curve has a unique point of order 2.

Any such curve supports complete Edwards coordinates, and also supports Mont-
gomery coordinates with the A2− 4 non-squareness condition used in the proofs
in [9].

One needs to search through many of these curves to find curves with small
cofactors (a standard requirement). Furthermore, one needs to search through
many curves with small cofactors to find curves whose twists also have acceptably
small cofactors (see Section 4).

Taking a very small parameter d for an Edwards curve x2 + y2 = 1 + dx2y2

produces a small but measurable performance improvement compared to taking
a random d. It has become common practice to take the smallest acceptable inte-
ger d; the performance justification here is miniscule, but taking any larger value
of d would be hard to justify. This practice is comforting for people concerned
about the flexibility available to the curve generator, as in Section 1. Before Ed-
wards curves were known, analogous considerations dictated taking the smallest
acceptable integer (A− 2)/4 for a Montgomery curve y2 = x3 +Ax2 + x; this is
how Curve25519 was generated.

6 Primes

The literature on multiprecision arithmetic—software for multiplying larger in-
tegers than the hardware is designed to multiply—is full of variable-time algo-
rithms. Constant-time field arithmetic therefore requires special attention from
software implementors.
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6.1. Constant-time arithmetic. Constant-time software implementations are
similar to hardware implementations: they allocate a constant number of bits for
each integer, and always perform arithmetic on all bits, without skipping bits.
For example:

• If the goal is to add a to b, where 255 bits are allocated for a and 255 bits
are allocated for b: Allocate 256 bits for a + b. Of course, it’s possible that
a+ b would fit into 255 bits, but don’t check.

• If the goal is to multiply a by b, where 256 bits are allocated for a and 256
bits are allocated for b: Allocate 512 bits for ab.

The reason that this strategy does not spiral out of control is that for an elliptic
curve modulo p one is free to reduce modulo p at any moment. The details of
this reduction depend on the choice of p.

6.2. Reduction modulo 2255 − 19. Consider, for example, 600 bits allocated
to hold an integer c modulo p = 2255 − 19. Replace c with 19q + r, where
r = c mod 2255 and q =

⌊
c/2255

⌋
, after allocating 350 bits for 19q + r. It’s easy

to see that 19q + r is the same as c modulo p. Repeating the same idea reduces
350 bits to 256 bits, small enough for the next multiplication.

At the end of scalar multiplication it’s important to completely reduce the
output modulo p. This takes two iterations of constant-time conditional sub-
traction. One conditional subtraction, by definition, replaces c with c− (1− s)p
where s is the sign bit in c− p.

6.3. Reduction modulo the P-256 prime. For comparison, the NIST P-256
prime p is 2256−2224+2192+296−1. The ECDSA standard specifies the following
reduction procedure given an integer “A less than p2”:

• Write A as the vector

(A15, A14, A13, A12, A11, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0),

meaning
∑

iAi2
32i.

• Define
T = (A7, A6, A5, A4, A3, A2, A1, A0);

S1 = (A15, A14, A13, A12, A11, 0, 0, 0);

S2 = (0, A15, A14, A13, A12, 0, 0, 0);

S3 = (A15, A14, 0, 0, 0, A10, A9, A8);

S4 = (A8, A13, A15, A14, A13, A11, A10, A9);

D1 = (A10, A8, 0, 0, 0, A13, A12, A11);

D2 = (A11, A9, 0, 0, A15, A14, A13, A12);

D3 = (A12, 0, A10, A9, A8, A15, A14, A13);

D4 = (A13, 0, A11, A10, A9, 0, A15, A14).

• Compute T + 2S1 + 2S2 + S3 + S4 −D1 −D2 −D3 −D4.
• Reduce modulo p “by adding or subtracting a few copies” of p.
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This is considerably more complicated, and considerably slower, than reduction
modulo 2255− 19. Even worse, what does “a few copies” mean in the final step?
This sounds like a loop, taking variable time, presumably a security problem.

With some effort one can see that the following constant-time procedure al-
ways works for the final step:

• Conditionally add 4p.
• Conditionally add 2p.
• Conditionally add p.
• Conditionally subtract 4p.
• Conditionally subtract 2p.
• Conditionally subtract p.

This is, however, quite slow. One might try to delay this procedure until the
end of the computation, but then the next multiplication will violate the “A less
than p2” requirement. One can write down a revised reduction algorithm that
works for larger values of A, but this adds even more complexity.

Even worse, this reduction procedure assumes that integers are expressed
in radix 232, but the literature clearly shows that 232 is not the best radix
for additions and multiplications on most platforms. Implementors who try a
different radix for faster additions and multiplications will need to insert many
bit shifts and extractions into the NIST P-256 reduction procedure, incurring
further complexity and cost.

6.4. A few good primes. The literature contains cost analyses, at various levels
of detail, of field arithmetic on many different platforms modulo many different
primes. These analyses strongly suggest that a few primes provide particularly
good cross-platform performance for their size.

We are not aware of any reason to allow a prime that isn’t Pareto-optimal:
a prime for which it’s possible to gain cross-platform performance by switching
to another prime that’s at the same (or higher) security level. We suggest being
even more restrictive than this, and excluding any prime for which it’s possible
to gain cross-platform performance by switching to another prime that’s within
1 bit of the same size (or larger). Small differences in security aren’t meaningful:
if someone has enough computer power to break a prime, it doesn’t make any
sense to respond by switching to another prime that’s just one bit larger. This
rule still leaves some particularly fast primes, such as 2255 − 19 and 2521 − 1.

7 “Digital signature schemes”: questions from NIST

7.1. “Do the digital signature schemes and key sizes specified in FIPS
186-4 satisfy the security requirements of applications used by indus-
try?”

No. See above.

7.2. “Are there other digital signature schemes that should be con-
sidered for inclusion in a future revision to FIPS 186? What are the
advantages of these schemes over the existing schemes in FIPS 186?”
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Yes. See above, particularly Section 2.

8 “Security of elliptic curves”: questions from NIST

8.1. “Do the NIST-recommended curves satisfy the security require-
ments of applications used by industry?”

No. See above.

8.2. “Are there any attacks of cryptographic significance on Elliptic
Curve Cryptography that apply to the NIST-recommended curves or
other widely used curves?”

Yes. See above.

9 “Elliptic curve specifications and criteria”: questions
from NIST

9.1. “Is there a need for new elliptic curves to be considered for stan-
dardization?”

Presumably “standardization” here means standardization by NIST, rather
than, e.g., standardization by IETF or de-facto standardization by the commu-
nity. The answer still depends on what NIST means by “need” and by “new”.

Next-generation ECC has already been widely deployed. Nicolai Brown main-
tains public lists13 of “Things that use Curve25519” [23] and “Things that use
Ed25519” [24]. The lists include, along with many other examples,

• Apple’s iOS (iPhone, iPad, etc.) operating system;
• the TextSecure (Signal) messaging system;
• the standard OpenSSH remote-login software;
• the Tor network; and
• Google’s QUIC protocol.

Our impression is that NIST P-256, the most popular NIST curve, has now been
surpassed by Curve25519 in a wide range of usage metrics.

The reasons for users selecting Curve25519 over NIST P-256 have been am-
ply documented. Maybe these reasons aren’t relevant to NIST’s “needs”; we
haven’t seen a definition of NIST’s “needs”. As for “new”, there are clearly large
differences between “new to NIST’s ECC standards”, “new to real-world ECC
deployment”, and “newly developed”.

9.2. “If there is a need, what criteria should NIST use to evaluate any
curves to be considered for inclusion?”

There was extensive discussion of curve criteria on the CFRG mailing list in
2014 and 2015. NIST may find this discussion useful as a starting point.

13 We incorporate those lists by reference into our comments to NIST.
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Obviously all proposed elliptic curves must resist all publicly known ECDLP
attacks. The specified base point on the curve must have large enough prime
order to resist rho attacks; must be immune to additive transfers; and must
have large enough embedding degree to resist multiplicative transfers.

There might be submissions of curves that (like NIST K-163) are clearly
feasible but expensive to break. Such submissions will force NIST to quantify
its minimum acceptable security level. The first author has a new blog post [11]
pointing out that NIST’s previous evaluations of quantitative security levels have
failed to take into account the damage done by batch attacks.14

In general the modern trend is towards conservative prime-field ECC. Note
that asymptotically 100% of all curves over all finite fields, counted in the usual
way, are curves over prime fields; in other words, curves over non-prime fields are,
mathematically, extremely rare. The advent of “Weil descent” broke ECDLP for
many curves over non-prime fields, and the limits of Weil descent are still not
entirely clear, as illustrated by ongoing debates regarding whether Weil descent
takes subexponential time to break ECDLP for all binary fields. There are in-
teresting hardware performance advantages to binary curves (especially Koblitz
curves), and NIST’s current binary curves are clearly not broken by the best
Weil-descent attacks known today; on the other hand, securely implementing
binary-field arithmetic in software is considerably more difficult and error-prone
than implementing prime-field arithmetic, and the extra structure of these curves
makes security analysis more difficult and less confidence-inspiring.

There might also be, again for interesting performance reasons, proposals of
genus-2 hyperelliptic curves; special curves over prime fields with extra “endo-
morphisms” (GLV curves); special curves over quadratic extension fields with
extra endomorphisms (Q-curves, including GLS curves); etc. We believe that
considering any of these curves will be a distraction from fixing the problems
with NIST’s current ECC standards. We specifically recommend that NIST dis-
regard any GLV/GLS/Q-curve proposals: the GLV patents are still valid and
cover all use of extra endomorphisms to speed up scalar multiplication, so these
curves will simply end up adding worrisome structure without any noticeable
benefits in speed and of course without any benefits in simplicity.

In this document and in our SafeCurves [19] web site,15 we consider the
security of ECC implementations, looking beyond the narrow question of ECDLP
security. This means paying attention to the security impact of implementors
pursuing simplicity, the security impact of implementors pursuing speed, risks
of various types of errors in implementations, etc. We strongly encourage NIST
to do the same.

To take into account the big picture of simplicity, security, and speed, we
recommend that NIST adopt the following statement of principles:

• Principle 1: We want speed and simplicity (and speed-simplicity combina-
tions) for secure implementations.

14 We incorporate that blog post by reference into our comments to NIST.
15 We incorporate the SafeCurves web site by reference into our comments to NIST.



Failures in NIST’s ECC standards 17

• Principle 2: We want to avoid speed incentives and simplicity incentives
towards insecure implementations.

• “Secure” includes the following properties: an implementation works cor-
rectly for all valid inputs; avoids compromising security when inputs are
invalid; avoids all data flow from secrets to timing; etc.

• “Speed” includes speed on many different platforms: e.g., speed on 64-bit
desktop CPUs, speed on 32-bit smartphone CPUs, speed on embedded mi-
crocontrollers, and speed of hardware implementations.

• “Speed” includes speed of many important ECC operations: e.g., key gener-
ation, signing, verification, and DH shared-secret computation. “Simplicity”
includes the simplicity of implementations supporting all of these opera-
tions, the simplicity of implementations supporting only DH, the simplicity
of implementations supporting only signatures, etc.

• “Simplicity” includes the simplicity of new implementations, and the sim-
plicity of modifying preexisting implementations.

More specific requirements can be derived from these general principles. For ex-
ample, SafeCurves requires twist-secure curves supporting (1) simple, fast, com-
plete, constant-time single-coordinate single-scalar multiplication and (2) simple,
fast, complete, constant-time multi-scalar multiplication. “Fast” means that im-
plementations of scalar multiplication for the same curve cannot be much faster,
and “simple” means that reasonably fast implementations of scalar multiplica-
tion for the same curve cannot be much more concise. Our analysis indicates that
the details of these requirements are forced by Principle 2, avoiding incentives
towards insecure implementations.

When specific requirements (or statements of desiderata) are in conflict with
these general simplicity/security/speed principles, the requirements should be
corrected. Consider, for example, the following claim from NSA in NIST’s curve
standard: “For efficiency reasons, it is desirable to take the cofactor to be as small
as possible.” All of the NIST prime-field curves have cofactor 1. However, this
extreme cofactor requirement actually produces a slowdown: the NIST curves are
considerably slower than Edwards curves at similar (or even somewhat higher)
security levels, despite the fact that Edwards curves always have cofactor at
least 4. For DH this slowdown was already clear from the literature predating
NSA’s claim. We do not see any reason for violating the cofactor limits stated
in FIPS 186-4 (at least 210, depending on the size of p), but we also do not see
any justification for those specific limits.

9.3. “Do you anticipate a need to create, standardize or approve new
elliptic curves on an ongoing basis?”

No (despite the aforementioned caveats regarding NIST’s “needs”). Replacing
“ECDLP security” with “ECC security” as the goal is a one-time correction.

10 “Adoption”: questions from NIST

10.1. “Which of the approved digital signature schemes and NIST-
recommended curves have been used in practice?”
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For a typical network packet today, the answer is “none”. NIST’s ECC stan-
dards are not being used to protect that packet against espionage, forgery, and
sabotage. Either the packet is protected by a different (probably lower-security)
mechanism, or it isn’t protected at all.

We believe that all network packets should be protected by strong cryptogra-
phy, and that ECC is the community’s best hope for getting this done in the near
future.16 The packets that are not protected by ECC today should be viewed
by NIST as the most important target for any new ECC standards.

This target is not accurately reflected by the corner case of people who are
happily using NIST’s ECC standards today. Data regarding this corner case is
of some interest but should not be misunderstood as data regarding future use
of ECC.

10.2. “Which elliptic curves are accepted for use in international mar-
kets?”

The international situation is not very different from the U.S. situation. A
few countries (France, Germany, Russia, and China) are encouraging use of their
locally developed curves, but they seem to have had only limited success. See
also Section 11.3.

11 “Interoperability”: questions from NIST

11.1. “If new curves were to be standardized, what would be the
impact of changing existing implementations to allow for the new
curves?”

The answer depends on the curve.
There are many freely available implementations of Curve25519. For example,

TweetNaCl [16] is a complete self-contained portable cryptographic library that
fits into 100 tweets, and implements the most important Curve25519 use cases
(X25519 and Ed25519). There are many other implementations of Curve25519
optimized for many different platforms, supporting other languages, etc., and in
most cases supporting the same well-known easy-to-use API, with extensive tests
provided by the SUPERCOP benchmarking framework. Various Curve25519 im-
plementations are also the targets of state-of-the-art ECC software verification.
People can, should, and do simply use these implementations.

16 It has been well known since the 1990s that quantum computers break ECC. There
are proposals for post-quantum systems, and there will obviously be more and more
users who deploy such proposals. However, this deployment is not a serious argu-
ment against deploying ECC: for the foreseeable future this deployment will be done
as a supplement to ECC, not as a replacement for it. Most post-quantum public-
key systems have not been thoroughly studied, so users want ECC as a backup to
provide some security in case of catastrophic failure. There are some conservative
post-quantum public-key systems, such as the systems recently recommended [5]
by the European PQCRYPTO consortium, but those systems are expensive enough
that users who can afford them as replacements for ECC can also afford them as
supplements to ECC.
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It would not be very difficult to build up a similar ecosystem of implemen-
tations of a higher-security next-generation curve, such as E-521. See our paper
[13] with Chuengsatiansup for several reasons that a higher-security curve might
be of interest.

Old-fashioned curves are considerably more difficult to implement, and much
more likely to produce low-quality (complex, slow, breakable) implementations.
History shows that the lowest-quality ECC implementations are “generic” im-
plementations that try to handle many different curves17 with a single code
base. OpenSSL’s “generic” ECC implementation is complex, slow, hard to au-
dit, likely to be buggy, and likely to be breakable by timing attacks; OpenSSL
has improved code quality by adding a separate NIST P-256 implementation, a
separate NIST P-384 implementation, etc.

To the extent that code size is a problem (for auditing, for verification, for
small devices, etc.), the obvious solution to the problem is to prune the list of
supported curves. This solution is much more effective, and produces higher-
quality results, than trying to merge implementations of many curves into a
single “generic” implementation.

For someone who really wants to merge an implementation of curve C into
an existing implementation of curve B, the exact implementation difficulty de-
pends on B, C, and many details of the existing implementation. For example,
if a NIST-P-curve implementation assumes curves of the form y2 = x3 − 3x+ b
in Weierstrass coordinates, then generalizing it to y2 = x3 + ax + b will typi-
cally require rearranging some field-arithmetic calls, and adapting it to Edwards
coordinates will typically require some extra lines of code to convert from Ed-
wards coordinates to Weierstrass coordinates and back. Of course, when evalu-
ating existing implementations of the NIST curves, NIST should also consider
the question of whether those implementations are secure and whether those
implementations are successfully protecting typical users. Many existing imple-
mentations should simply be removed and replaced by new implementations of
better curves.

11.2. “What is the impact of having several standardized curves on
interoperability?”

A client’s ECDH implementation cannot interoperate with a server’s ECDH
implementation unless there is at least one curve that is supported by both
the client and the server. Furthermore, the client and server need to be able
to securely figure out which curve that is, and exchange keys using that curve.
Similar comments apply to other ECC protocols, such as signatures.

The simplest way for a protocol to guarantee interoperability is to specify a
single curve to be used by all clients and all servers. One generalization that
guarantees interoperability is to specify a set of curves to be supported by all
clients; each server can then make its own curve choice (and securely authen-

17 These “generic” implementations actually have various restrictions on the set of
curves supported. Should an implementation be called “generic” if it can’t handle
binary fields? Quadratic extension fields? Elliptic curves that aren’t of the form
y2 = x3 − 3x + b? Curves beyond genus 1?
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ticate this choice along with authenticating the server’s ECC key). A different
generalization that guarantees interoperability is to specify a set of curves to be
supported by all servers; each client can then make its own curve choice. Note
that these generalizations cause obvious damage to implementation simplicity
and to performance, especially in situations where a client sends a key to a server
whose curve choice isn’t known to the client, or vice versa.

Some protocols don’t actually guarantee ECC interoperability, even when
both the client and the server support ECC. For example, TLS seems to have
standardized a surprisingly large number of curves without thinking these issues
through. Because of the same issues of implementation simplicity and perfor-
mance, each widely used TLS implementation supports only a subset of the
curves, and nothing in the TLS protocol guarantees that these subsets will over-
lap. If a certificate authority issues ECC certificates using a Brainpool curve or
one of the more obscure NIST curves, will a client understand the certificates?
The main reason that “ECDHE” works in TLS today is that implementors have
collectively decided to support NIST P-256, in effect taking the simple approach
to guaranteeing interoperability.

To the extent that the profusion of standardized curves causes interoperability
problems, one can and should blame the standards for encouraging these prob-
lems. Does NIST think that having a long list of standardized curves is a good
thing? For each of its existing curves, and for any new curves that are proposed,
NIST’s default assumption should be that having the curve standardized is a
bad idea.

Obviously this default can, and occasionally should, be overridden. NIST ECC
is failing quite disastrously in practice, in ways that are fixed by next-generation
ECC, and there is already widespread adoption of next-generation ECC. But the
question for any particular curve shouldn’t be “Does standardizing this curve
have a benefit?”; it should be “Does standardizing this curve have a large enough
benefit to outweigh the costs?”

11.3. “What are the advantages or disadvantages of allowing users
or applications to generate their own elliptic curves, instead of using
standardized curves?”

Computing n independent `-bit discrete logarithms on one properly chosen
curve costs roughly 2`/2

√
n additions, while computing n independent `-bit dis-

crete logarithms on n independent properly chosen curves costs roughly 2`/2n
additions (by the best attack algorithms known today). This means that there
is a quantitative security advantage in having each key on its own curve.

However, taking a single curve with a somewhat larger ` produces a much
larger quantitative security advantage at much lower cost. We recommend taking
` large enough that foreseeable attackers (pre-quantum) will be limited to 2`/2ε
additions for a small value of ε. The attacker’s chance of finding even one of
the n discrete logarithms is then limited to approximately ε2. This strategy was
used in the design of Curve25519, and all of these security issues were described
in the Curve25519 paper.
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Regarding cost: As long as primes are standardized, allowing random curve
parameters does not produce a huge slowdown in curve arithmetic. However, con-
stantly changing curves means constantly transmitting new curve parameters,
which is a noticeable cost in bandwidth. More importantly, it means constantly
generating new curves, which is not only a significant expense in CPU time but
also a nightmarish increase in complexity.

Of course, a user who generates his own elliptic curves is protected against the
possibility of a malicious curve generator choosing the weakest curve from the
same pool, using a weakness not known to the public. However, this is merely
a possibility, while there are definite problems with excessive complexity (and
slowness), so it seems unwise to try to eliminate this possibility at the expense
of a drastic increase in complexity.

Many ECC-based protocols (e.g., group key exchange) require multiple users
to share a curve, raising the question of who will be trusted to generate the curve.
Multiparty computation is a theoretical answer but adds even more complexity.

More moderate curve pools (one curve per application, one curve per country,
etc.) would practically eliminate the costs in CPU time and bandwidth, but
would also practically eliminate the security advantages. The huge complexity
disadvantage would remain.

12 “Performance”: questions from NIST

12.1. “Do the performance characteristics of existing implementations
of the digital signatures schemes approved in FIPS 186-4 meet the
requirements of applications used by industry?”

This depends on the application. Note that this question is another example
of how NIST can get a quite wrong picture by listening too much to people who
are happily using the NIST curves today, and not thinking enough about the
much larger set of people who should be using ECC.

Many applications can afford huge elliptic curves and can afford slow imple-
mentations. Often one or two ECC operations are used to protect a very long
message (or a message requiring extensive non-ECC computations for other rea-
sons). Often CPUs are idle, or are so busy with something other than ECC that
the cost of ECC is negligible.

On the other hand, sometimes ECC has a serious impact on cost. Consider,
for example, the cost of protecting against denial of service when a busy Internet
server is handling many packets per second from different sources. An attacker
can try to flood the network, but an attacker can also try to flood the CPU with
new public keys to process. If the CPU cannot keep up with the cost of public-key
cryptography then the server will have to drop traffic from new legitimate keys.
As another example, deployment of public-key cryptography in a wide variety of
small devices relies critically on being able to make ECC fast enough and small
enough.

On an Intel Sandy Bridge CPU (common in data centers today), OpenSSL
1.0.2’s optimized NIST P-256 implementation takes 310000 cycles for ECDH
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shared-secret computation and 430000 cycles for ECDSA signature verification,
while Tung Chou’s software takes only 160000 cycles for X25519 shared-secret
computation and only 206000 cycles for Ed25519 signature verification. This is
just one example of how Curve25519 “over the past ten years has set speed
records for conservative ECC on many different platforms, using implementa-
tions from 23 authors”, as stated in [12, Section 7]. See [9] (original paper for
various 32-bit CPUs), [34] (Core 2, Athlon 64), [30] (Cell), [15] (more Intel
CPUs), [20] (NEON), [41] (more Intel CPUs), [42] (GPUs), [51] (FPGAs), [28]
(more Intel CPUs), [31] (microcontrollers), and [38] (ASICs).

13 “Intellectual property”: questions from NIST

13.1. “What are the desired intellectual property requirements for
any new curves or schemes that could potentially be included in the
Standard?”

Most clients and servers for Internet communication (web, email, chat, col-
laboration, etc.) are distributed and used for free, without payment of license
fees. This has proven to be a productive environment for rapid deployment of
patent-free cryptography, while patented cryptography is simply not considered.

As far as we know, the most important ECC patents have all expired, and the
entire core of ECC is now patent-free. Patent 4995082 (Schnorr) expired in 2008.
Patents 5159632, 5271061, and 5463690 (the Crandall patents on “shift and add”
ECC primes) expired in 2011. Patent 6141420 (point compression) expired in
2014. Patents 5299262 and 5999627 (fixed-base scalar multiplication by Brickell–
Gordon–McCurley and Lim–Lee) expired in 2012 and 2015 respectively. We have
not found any current patents covering, e.g., X25519 (ECDH with Curve25519)
or Ed25519 signatures.

Some fringes of ECC are still patented. The most interesting remaining patents
are the GLV patents; these patents cover the use of endomorphisms to speed up
ECC on special curves (GLV curves, GLS curves, Q-curves, and so on). How-
ever, fixing the problems with NIST’s ECC standards does not require going
near these fringes.

To summarize, focusing on patent-free ECC obviously has important advan-
tages, and there is no evidence of any important disadvantages.

13.2. “What impact has intellectual property concerns had on the
adoption of elliptic curve cryptography?”

Certicom’s web page asserts that Certicom owns “over 450 patents and patents
pending worldwide covering key aspects of Elliptic Curve Cryptography (ECC)”.
A Wikipedia page, highlighting Certicom and citing an incident from a decade
ago, asserts that “Patent-related uncertainty around elliptic curve cryptography
(ECC), or ECC patents, is one of the main factors limiting its wide acceptance.”

“Over 450 patents and patents pending worldwide” might sound like a large
minefield, obviously difficult for anyone to review. In fact, Certicom has sys-
tematically inflated this number, by splitting each of its ideas into many sepa-
rate patent applications. For example, Certicom’s Dual EC patent application
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was split across at least four jurisdictions: Canada (CA 2594670), Europe (EP
06704329), Japan (JP 5147412), and the United States. In the United States
it was split into patent 8396213 and patent application 2013/0170642, with the
possibility of further splits. As another example, Certicom repeatedly split its
GLV patent application, producing a quite noticeable fraction of all of Certi-
com’s US patent applications. The number of different ideas actually patented
by Certicom in the US is vastly smaller than 450, and it seems unlikely that Cer-
ticom has significantly more applications (or significantly different applications)
in other jurisdictions.

It is reasonably clear that, as a historical matter, Certicom was successful in
spreading fear, uncertainty, and doubt regarding its patents, drastically limiting
deployment of ECC for many years. However, today the general consensus is
that ECC is safe to deploy without patent fees. Our impression is that public
perception was significantly affected by the publication of RFC 6090 in 2011:
this RFC was carefully limited to sources so old that they were obviously not
patented,18 and nevertheless described a usable form of ECC similar to NIST’s
ECC standards. We are not aware of any contributions of Certicom to the forms
of ECC that we recommend today.
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