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Estimating the success of re-identifications in
incomplete datasets using generative models
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While rich medical, behavioral, and socio-demographic data are key to modern data-driven

research, their collection and use raise legitimate privacy concerns. Anonymizing datasets

through de-identification and sampling before sharing them has been the main tool used to

address those concerns. We here propose a generative copula-based method that can

accurately estimate the likelihood of a specific person to be correctly re-identified, even in a

heavily incomplete dataset. On 210 populations, our method obtains AUC scores for pre-

dicting individual uniqueness ranging from 0.84 to 0.97, with low false-discovery rate. Using

our model, we find that 99.98% of Americans would be correctly re-identified in any dataset

using 15 demographic attributes. Our results suggest that even heavily sampled anonymized

datasets are unlikely to satisfy the modern standards for anonymization set forth by GDPR

and seriously challenge the technical and legal adequacy of the de-identification release-and-

forget model.
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In the last decade, the ability to collect and store personal data
has exploded. With two thirds of the world population having
access to the Internet1, electronic medical records becoming

the norm2, and the rise of the Internet of Things, this is unlikely
to stop anytime soon. Collected at scale from financial or medical
services, when filling in online surveys or liking pages, this data
has an incredible potential for good. It drives scientific
advancements in medicine3, social science4,5, and AI6 and pro-
mises to revolutionize the way businesses and governments
function7,8.

However, the large-scale collection and use of detailed
individual-level data raise legitimate privacy concerns. The recent
backlashes against the sharing of NHS [UK National Health
Service] medical data with DeepMind9 and the collection and
subsequent sale of Facebook data to Cambridge Analytica10 are
the latest evidences that people are concerned about the con-
fidentiality, privacy, and ethical use of their data. In a recent
survey, >72% of U.S. citizens reported being worried about
sharing personal information online11. In the wrong hands,
sensitive data can be exploited for blackmailing, mass surveil-
lance, social engineering, or identity theft.

De-identification, the process of anonymizing datasets before
sharing them, has been the main paradigm used in research and
elsewhere to share data while preserving people’s privacy12–14.
Data protection laws worldwide consider anonymous data as not
personal data anymore15,16 allowing it to be freely used, shared,
and sold. Academic journals are, e.g., increasingly requiring
authors to make anonymous data available to the research
community17. While standards for anonymous data vary, modern
data protection laws, such as the European General Data Pro-
tection Regulation (GDPR) and the California Consumer Privacy
Act (CCPA), consider that each and every person in a dataset has
to be protected for the dataset to be considered anonymous18–20.
This new higher standard for anonymization is further made clear
by the introduction in GDPR of pseudonymous data: data that
does not contain obvious identifiers but might be re-identifiable
and is therefore within the scope of the law16,18.

Yet numerous supposedly anonymous datasets have recently
been released and re-identified15,21–31. In 2016, journalists re-
identified politicians in an anonymized browsing history dataset
of 3 million German citizens, uncovering their medical infor-
mation and their sexual preferences23. A few months before, the
Australian Department of Health publicly released de-identified
medical records for 10% of the population only for researchers to
re-identify them 6 weeks later24. Before that, studies had shown
that de-identified hospital discharge data could be re-identified
using basic demographic attributes25 and that diagnostic codes,
year of birth, gender, and ethnicity could uniquely identify
patients in genomic studies data26. Finally, researchers were able
to uniquely identify individuals in anonymized taxi trajectories in
NYC27, bike sharing trips in London28, subway data in Riga29,
and mobile phone and credit card datasets30,31.

Statistical disclosure control researchers and some companies
are disputing the validity of these re-identifications: as datasets
are always incomplete, journalists and researchers can never
be sure they have re-identified the right person even if they
found a match32–35. They argue that this provides strong plau-
sible deniability to participants and reduce the risks, making such
de-identified datasets anonymous including according to
GDPR36–39. De-identified datasets can be intrinsically incom-
plete, e.g., because the dataset only covers patients of one of the
hospital networks in a country or because they have been sub-
sampled as part of the de-identification process. For example, the
U.S. Census Bureau releases only 1% of their decennial census
and sampling fractions for international census range from 0.07%
in India to 10% in South American countries40. Companies are

adopting similar approaches with, e.g., the Netflix Prize dataset
including <10% of their users41.

Imagine a health insurance company who decides to run a
contest to predict breast cancer and publishes a de-identified
dataset of 1000 people, 1% of their 100,000 insureds in California,
including people’s birth date, gender, ZIP code, and breast cancer
diagnosis. John Doe’s employer downloads the dataset and finds
one (and only one) record matching Doe’s information: male
living in Berkeley, CA (94720), born on January 2nd 1968, and
diagnosed with breast cancer (self-disclosed by John Doe). This
record also contains the details of his recent (failed) stage IV
treatments. When contacted, the insurance company argues that
matching does not equal re-identification: the record could
belong to 1 of the 99,000 other people they insure or, if the
employer does not know whether Doe is insured by this company
or not, to anyone else of the 39.5M people living in California.

Our paper shows how the likelihood of a specific individual to
have been correctly re-identified can be estimated with high
accuracy even when the anonymized dataset is heavily incom-
plete. We propose a generative graphical model that can be
accurately and efficiently trained on incomplete data. Using
socio-demographic, survey, and health datasets, we show that our
model exhibits a mean absolute error (MAE) of 0.018 on average
in estimating population uniqueness42 and an MAE of 0.041 in
estimating population uniqueness when the model is trained on
only a 1% population sample. Once trained, our model allows us
to predict whether the re-identification of an individual is correct
with an average false-discovery rate of <6.7% for a 95% threshold
ðbξx > 0:95Þ and an error rate 39% lower than the best achievable
population-level estimator. With population uniqueness increas-
ing fast with the number of attributes available, our results show
that the likelihood of a re-identification to be correct, even in a
heavily sampled dataset, can be accurately estimated, and is often
high. Our results reject the claims that, first, re-identification is
not a practical risk and, second, sampling or releasing partial
datasets provide plausible deniability. Moving forward, they
question whether current de-identification practices satisfy the
anonymization standards of modern data protection laws such as
GDPR and CCPA and emphasize the need to move, from a legal
and regulatory perspective, beyond the de-identification release-
and-forget model.

Results
Using Gaussian copulas to model uniqueness. We consider a
dataset D, released by an organization, and containing a sample
of nD individuals extracted at random from a population of n
individuals, e.g., the US population. Each row x(i) is an individual
record, containing d nominal or ordinal attributes (e.g., demo-
graphic variables, survey responses) taking values in a discrete
sample space X . We consider the rows x(i) to be independent and
identically distributed, drawn from the probability distribution X
with PðX ¼ xÞ, abbreviated p(x).

Our model quantifies, for any individual x, the likelihood ξx for
this record to be unique in the complete population and therefore
always successfully re-identified when matched. From ξx, we
derive the likelihood κx for x to be correctly re-identified when
matched, which we call correctness. If Doe’s record x(d) is unique
in D, he will always be correctly re-identified (κxðdÞ ¼ 1 and
ξxðdÞ ¼ 1). However, if two other people share the same attribute
(xðdÞ not unique, ξxðdÞ ¼ 0), Doe would still have one chance out
of three to have been successfully re-identified κxðdÞ ¼ 1=3ð Þ. We
model ξx as:

ξx � P x unique in ðxð1Þ; ¼ ; xðnÞÞ j 9i; xðiÞ ¼ x
� �

ð1Þ
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¼ 1� pðxÞð Þn�1 ð2Þ
and κx as:

κx � P x correctly matched in ðxð1Þ; ¼ ; xðnÞÞ j 9i; xðiÞ ¼ x
� �

ð3Þ

¼ 1
n
1� ξn=ðn�1Þ

x

1� ξ1=ðn�1Þ
x

ð4Þ

with proofs in “Methods”.
We model the joint distribution of X1, X2, … Xd using a latent

Gaussian copula43. Copulas have been used to study a wide range
of dependence structures in finance44, geology45, and biomedi-
cine46 and allow us to model the density of X by specifying
separately the marginal distributions, easy to infer from limited
samples, and the dependency structure. For a large sample space
X and a small number nD of available records, Gaussian copulas
provide a good approximation of the density using only d(d− 1)/
2 parameters for the dependency structure and no
hyperparameter.

The density of a Gaussian copula CΣ is expressed as:

cΣðuÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
detΣ

p exp � 1
2
Φ�1ðuÞT � ðΣ�1 � IÞ �Φ�1ðuÞ

� �
ð5Þ

with a covariance matrix Σ, u ∈ [0, 1]d, and Φ the cumulative
distribution function (CDF) of a standard univariate normal
distribution.

We estimate from D the marginal distributions Ψ (marginal
parameters) for X1, …, Xd and the copula distribution Σ
(covariance matrix), such that p(x) is modeled by

qðxjΣ;ΨÞ ¼
Z F�1

1 ðx1jΨÞ

F�1
1 ðx1�1jΨÞ

¼
Z F�1

d ðxd jΨÞ

F�1
d ðxd�1jΨÞ

cΣðuÞ du ð6Þ

with Fj the CDF of the discrete variable Xj. In practice, the copula
distribution is a continuous distribution on the unit cube, and
p(x) its discrete counterpart on X (see Supplementary Methods).

We select, using maximum likelihood estimation, the marginal
distributions from categorical, logarithmic, and negative binomial
count distributions (see Supplementary Methods). Sampling the
complete set of covariance matrices to estimate the association
structure of copulas is computationally expensive for large
datasets. We rely instead on a fast two-step approximate inference
method: we infer separately each pairwise correlation factor Σij
and then project the constructed matrix Σ on the set of symmetric
positive definite matrices to accurately recover the copula
covariance matrix (see “Methods”).

We collect five corpora from publicly available sources:
population census (USA and MERNIS) as well as surveys from
the UCI Machine Learning repository (ADULT, MIDUS, HDV).
From each corpus, we create populations by selecting subsets of
attributes (columns) uniformly. The resulting 210 populations
cover a large range of uniqueness values (0–0.96), numbers of
attributes (2–47), and records (7108–9M individuals). For
readability purposes, we report in the main text the numerical
results for all five corpora but will show figures only for USA.
Figures for MERNIS, ADULT, MIDUS, and HDV are similar and
available in Supplementary Information.

Figure 1a shows that, when trained on the entire population,
our model correctly estimates population uniqueness
ΞX ¼ P

x2X pðxÞ 1� pðxÞð Þn�1, i.e., the expected percentage of
unique individuals in (x(1), x(2), …, x(n)). The MAE between the
empirical uniqueness of our population ΞX and the estimated

uniqueness cΞX is 0.028 ± 0.026 [mean ± s.d.] for USA and 0.018 ±
0.019 on average across every corpus (see Table 1). Figure 1a and
Supplementary Fig. 1 furthermore show that our model correctly
estimates uniqueness across all values of uniqueness, with low
within-population s.d. (Supplementary Table 3).

Figure 1b shows that our model estimates population
uniqueness very well even when the dataset is heavily sampled
(see Supplementary Fig. 2, for other populations). For instance,
our model achieves an MAE of 0.029 ± 0.015 when the dataset
only contains 1% of the USA population and an MAE of 0.041 ±
0.053 on average across every corpus. Table 1 shows that our
model reaches a similarly low MAE, usually <0.050, across
corpora and sampling fractions.

Likelihood of successful re-identification. Once trained, we can
use our model to estimate the likelihood of his employer having
correctly re-identified John Doe, our 50-year-old male from
Berkeley with breast cancer. More specifically, given an individual
record x, we can use the trained model to compute the likelihoodbξx ¼ 1� qðx jΣ;ΨÞð Þn�1 for this record x to be unique in the
population. Our model takes into account information on both
marginal prevalence (e.g., breast cancer prevalence) and global
attribute association (e.g., gender and breast cancer). Since the
cdf. of a Gaussian copula distribution has no close-form expres-
sion, we evaluate q(x|Σ, Ψ) with a numerical integration of the
latent continuous joint density inside the hyper-rectangle defined
by the d components (x1, x2, …, xd)47,48. We assume no prior
knowledge on the order of outcomes inside marginals for nom-
inal attributes and randomize their order.

Figure 2a shows that, when trained on 1% of the USA
populations, our model predicts very well individual uniqueness,
achieving a mean AUC (area under the receiver-operator
characteristic curve (ROC)) of 0.89. For each population, to
avoid overfitting, we train the model on a single 1% sample, then
select 1000 records, independent from the training sample, to test
the model. For re-identifications that the model predicts to be

always correct (bξx > 0:95, estimated individual uniqueness >95%),
the likelihood of them to be incorrect (false-discovery rate) is
5.26% (see bottom-right inset in Fig. 2a). ROC curves for the
other populations are available in Supplementary Fig. 3 and have
overall a mean AUC of 0.93 and mean false-discovery rate of

6.67% for bξx > 0:95 (see Supplementary Table 1).
Finally, Fig. 2b shows that our model outperforms even the best

theoretically achievable prediction using only population unique-
ness, i.e., assigning the score ξðpopÞx ¼ ΞX to every individual
(ground truth population uniqueness, see Supplementary Meth-
ods). We use the Brier Score (BS)49 to measure the calibration of

probabilistic predictions: BS ¼ 1
n

Pn
i¼1 ξxðiÞ � cξxðiÞ� �2

with, in our

case, ξxðiÞ the actual uniqueness of the record xðiÞ (1 if xðiÞ is unique
and 0 if not) and cξxðiÞ the estimated likelihood. Our model obtains
scores on average 39% lower than the best theoretically achievable
prediction using only population uniqueness, emphasizing the
importance of modeling individuals’ characteristics.

Appropriateness of the de-identification model. Using our
model, we revisit the (successful) re-identification of Gov. Weld25.
We train our model on the 5% Public Use Microdata Sample
(PUMS) files using ZIP code, date of birth, and gender and
validate it using the last national estimate50. We show that, as a
male born on July 31, 1945 and living in Cambridge (02138), the
information used by Latanya Sweeney at the time, William Weld
was unique with a 58% likelihood (ξx= 0.58 and κx= 0.77),
meaning that Latanya Sweeney’s re-identification had 77%
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Fig. 1 Estimating the population uniqueness of the USA corpus. a We compare, for each population, empirical and estimated population uniqueness
(boxplot with median, 25th and 75th percentiles, maximum 1.5 interquartile range (IQR) for each population, with 100 independent trials per population).
For example, date of birth, location (PUMA code), marital status, and gender uniquely identify 78.7% of the 3 million people in this population (empirical
uniqueness) that our model estimates to be 78.2 ± 0.5% (boxplot in black). b Absolute error when estimating USA’s population uniqueness when the
disclosed dataset is randomly sampled from 10% to 0.1%. The boxplots (25, 50, and 75th percentiles, 1.5 IQR) show the distribution of mean absolute error
(MAE) for population uniqueness, at one subsampling fraction across all USA populations (100 trials per population and sampling fraction). The y axis
shows both p, the sampling fraction, and nS ¼ p´ n, the sample size. Our model estimates population uniqueness very well for all sampling fractions with
the MAE slightly increasing when only a very small number of records are available (p= 0.1% or 3061 records)

Table 1 Mean absolute error (mean ± s.d.) when estimating population uniqueness (100 trials per population)

MERNIS USA ADULT HDV MIDUS

Corpus n 8,820,049 3,061,692 32,561 8403 7108
c 10 40 50 50 60
[min Ξ, max Ξ] [0.087, 0.844] [0.000, 0.961] [0.000, 0.794] [0.002, 0.941] [0.052, 0.944]

Sampling fraction 100% 0.029 ± 0.019 0.028 ± 0.026 0.018 ± 0.016 0.006 ± 0.009 0.018 ± 0.014
10% 0.030 ± 0.019 0.028 ± 0.016 0.022 ± 0.020 0.011 ± 0.009 0.035 ± 0.044
5% 0.029 ± 0.019 0.027 ± 0.016 0.027 ± 0.023 0.015 ± 0.012 0.037 ± 0.055
1% 0.029 ± 0.019 0.029 ± 0.015 0.027 ± 0.014 0.045 ± 0.050 0.055 ± 0.079
0.5% 0.028 ± 0.019 0.029 ± 0.015 0.048 ± 0.039
0.1% 0.026 ± 0.017 0.058 ± 0.037

Our model correctly estimates population uniqueness even when only a small to very small fraction of the population is available. n denotes the population size and c the corpus size (the total number of
populations considered per corpus). We do not estimate population uniqueness when the sampled dataset contains <50 records
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correct ðbξx >0:95Þ, only 5.26% of them are incorrect (FDR). b Our model outperforms by 39% the best theoretically achievable prediction using population
uniqueness across every corpus. A red point shows the Brier Score obtained by our model, when trained on a 1% sample. The solid line represents the
lowest Brier Score achievable when using the exact population uniqueness while the dashed line represents the Brier Score of a random guess prediction
(BS= 1/3)
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chances of being correct. We show that, if his medical records had
included number of children—5 for William Weld—, her re-
identification would have had 99.8% chances of being correct!
Figure 3a shows that the same combinations of attributes (ZIP
code, date of birth, gender, and number of children) would also
identify 79.4% of the population in Massachusetts with high

confidence ðbξx > 0:80Þ. We finally evaluate the impact of specific
attributes on William Weld’s uniqueness. We either change the
value of one of his baseline attributes (ZIP code, date of birth, or
gender) or add one extra attribute, in both cases picking the
attribute at random from its distribution (see Supplementary
Methods). Figure 3c shows, for instance, that individuals with 3
cars or no car are harder to re-identify than those with 2 cars.
Similarly, it shows that it would not take much to re-identify
people living in Harwich Port, MA, a city of <2000 inhabitants.

Modern datasets contain a large number of points per
individuals. For instance, the data broker Experian sold Alteryx
access to a de-identified dataset containing 248 attributes per
household for 120M Americans51; Cambridge university

researchers shared anonymous Facebook data for 3M users
collected through the myPersonality app and containing, among
other attributes, users’ age, gender, location, status updates, and
results on a personality quiz52. These datasets do not necessarily
share all the characteristics of the one studied here. Yet, our
analysis of the re-identification of Gov. Weld by Latanya Sweeney
shows that few attributes are often enough to render the
likelihood of correct re-identification very high. For instance,
Fig. 3b shows that the average individual uniqueness increases
fast with the number of collected demographic attributes and that
15 demographic attributes would render 99.98% of people in
Massachusetts unique.

Our results, first, show that few attributes are often sufficient to
re-identify with high confidence individuals in heavily incomplete
datasets and, second, reject the claim that sampling or releasing
partial datasets, e.g., from one hospital network or a single online
service, provide plausible deniability. Finally, they show that,
third, even if population uniqueness is low—an argument often
used to justify that data are sufficiently de-identified to be
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adding one attribute. A complete description of the attributes and method is available in Supplementary Methods
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considered anonymous53—, many individuals are still at risk of
being successfully re-identified by an attacker using our model.

As standards for anonymization are being redefined, incl. by
national and regional data protection authorities in the EU, it is
essential for them to be robust and account for new threats like
the one we present in this paper. They need to take into account
the individual risk of re-identification and the lack of plausible
deniability—even if the dataset is incomplete—, as well as legally
recognize the broad range of provable privacy-enhancing systems
and security measures that would allow data to be used while
effectively preserving people’s privacy54,55.

Discussion
In this paper, we proposed and validated a statistical model to
quantify the likelihood for a re-identification attempt to be suc-
cessful, even if the disclosed dataset is heavily incomplete.

Beyond the claim that the incompleteness of the dataset pro-
vides plausible deniability, our method also challenges claims that
a low population uniqueness is sufficient to protect people’s
privacy53,56. Indeed, an attacker can, using our model, correctly
re-identify an individual with high likelihood even if the popu-
lation uniqueness is low (Fig. 3a). While more advanced guar-
antees like k-anonymity57 would give every individual in the
dataset some protection, they have been shown to be NP-Hard58,
hard to achieve in modern high-dimensional datasets59, and not
always sufficient60.

While developed to estimate the likelihood of a specific re-
identification to be successful, our model can also be used to
estimate population uniqueness. We show in Supplementary
Note 1 that, while not its primary goal, our model performs
consistently better than existing methods to estimate population
uniqueness on all five corpora (Supplementary Fig. 4, P < 0.05 in
78 cases out of 80 using Wilcoxon’s signed-rank test)61–66 and
consistently better than previous attempts to estimate individual
uniqueness67,68. Existing approaches, indeed, exhibit unpredic-
tably large over- and under-estimation errors. Finally, a recent
work quantifies the correctness of individual re-identification in
incomplete (10%) hospital data using complete population fre-
quencies24. Compared to this work, our approach does not
require external data nor to assume this external data to be
complete.

To study the stability and robustness of our estimations, we
perform further experiments (Supplementary Notes 2–8).

First, we analyze the impact of marginal and association
parameters on the model error and show how to use exogenous
information to lower it. Table 1 and Supplementary Note 7 show
that, at very small sampling fraction (below 0.1%), where the
error is the largest, the error is mostly determined by the mar-
ginals, and converges after few hundred records when the exact
marginals are known. The copula covariance parameters exhibit
no significant bias and decrease fast when the sample size
increases (Supplementary Note 8).

As our method separates marginals and association structure
inference, exogenous information from larger data sources
could also be used to estimate marginals with higher accuracy.
For instance, count distributions for attributes such as date
of birth or ZIP code could be directly estimated from national
surveys. We replicate our analysis on the USA corpus using a
subsampled dataset to infer the association structure
along with the exact counts for marginal distributions. Incor-
porating exogenous information reduces, e.g., the mean
MAE of uniqueness across all corpora by 48.6% (P < 0.01,
Mann–Whitney) for a 0.1% sample. Exogenous information
become less useful as the sampling fraction increases (Supple-
mentary Table 2).

Second, our model assumes that D is either uniformly sampled
from the population of interest X or, as several census bureaus are
doing, released with post-stratification weights to match the
overall population. We believe this to be a reasonable assumption
as biases in the data would greatly affect its usefulness and affect
any application of the data, including our model. To overcome an
existing sampling bias, the model can be (i) further trained on a
random sample from the population D (e.g., microdata census or
survey data) and then applied to a non-uniform released sample
(e.g., hospital data, not uniformly sampled from the population)
or (ii) trained using better, potentially unbiased, estimates for
marginals or association structure coming from other sources (see
above).

Third, since D is a sample from the population X, only the
records that are unique in the sample can be unique in the
population. Hence, we further evaluate the performance on our
model only on records that are sample unique and show that it
only marginally decrease the AUC (Supplementary Note 5). We
therefore prefer to not restrict our predictions to sample unique
records as (a) our models need to perform well on non-sample
unique records for us to be able to estimate correctness and (b) to
keep the method robust if oversampling or sampling with
replacement were to have been used.

Methods
Inferring marginals distributions. Marginals can be either (i) unknown and are
estimated from the marginals of the population sample XS , this is the assumption
used in the main text, or (ii) known with their exact distribution and cumulative
density function directly available.

In the first case, we fit marginal counts to categorical (naive plug-in estimator),
negative binomial, and logarithmic distributions using maximum log-likelihood.
We compare the obtained distributions and select the best likelihood according to
its Bayesian information criterion (BIC):

BIC ¼ �2 logbLþ k log nD ð7Þ
where bL is the maximized value of the likelihood function, nD the number of
individuals in the sample D, and k the number of parameters in the fitted marginal
distribution.

Inferring the parameters of the latent copula. Each cell Σij of the Σ covariance
matrix of a multivariate copula distribution is the correlation parameter of a
pairwise copula distribution. Hence, instead of inferring Σ from the set of all
covariance matrices, we separately infer every cell Σij∈ [0, 1] from the joint sample
of Di and Dj . We first measure the mutual information IðDi;DjÞ between the two

attributes and select σ ¼ cΣij minimizing the Euclidean distance between the
empirical mutual information and the mutual information of the inferred joint
distribution.

In practice, since the cdf. of a Gaussian copula is not tractable, we use a
bounded Nelder–Mead minimization algorithm. For a given (σ, (Ψi, Ψj)), we
sample from the distribution q(⋅|σ, (Ψi, Ψj)) and generate a discrete bivariate
sample Y from which we measure the objective:

f ðσÞ ¼ IðDi;DjÞ � IðY1;Y2Þ
��� ���

2
for σ 2 ½0; 1�

þ1 otherwise

(
ð8Þ

We then project the obtained bΣmatrix on the set of SDP matrices by solving the
following optimization problem:

min
A

A� bΣ��� ���
2

s:t: Ak0
ð9Þ

Modeling the association structure using mutual information. We use the
pairwise mutual information to measure the strength of association between
attributes. For a dataset D, we denote by ID the mutual information matrix where
each cell IðDi;DjÞ is the mutual information between attributes Di and Dj. When
evaluating mutual information from small samples, obtained scores are often
overestimating the strength of association. We apply a correction for randomness
using a permutation model69:

AIðDi;DjÞ ¼
IðDi;DjÞ � EðIðDi;DjÞÞ

maxfHðDiÞ;HðDjÞg � EðIðDi;DjÞÞ
ð10Þ
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In practice, we estimate the expected mutual information between Di and Dj

with successive permutations of Dj . We found that the adjusted mutual
information provides significant improvement for small samples and large support
size jXj compared to the naive estimator.

Theoretical and empirical population uniqueness. For n individuals x(1), x(2),…,
x(n) drawn from X, the uniqueness ΞX is the expected percentage of unique indi-
viduals. It can be estimated either (i) by computing the mean of individual
uniqueness or (ii) by sampling a synthetic population of n individuals from the
copula distribution. In the former case, we have

ΞX � 1
n
E

Xn
i¼1

xðiÞunique inðxð1Þ; ¼ ; xðnÞÞ
h i" #

ð11Þ

¼ 1
n
E

X
x2X

Tx

" #
ð12Þ

¼ 1
n

X
x2X

E½Tx � ð13Þ

where Tx= [∃!i, x(i)= x] equals one if there exists a single individual i such as x(i)

= x and zero otherwise. Tx follows a binomial distribution B(p(x), n). Therefore

E½Tx � ¼ npðxÞ 1� pðxÞð Þn�1 ð14Þ
and

ΞX ¼
X
x2X

pðxÞ 1� pðxÞð Þn�1
ð15Þ

This requires iterating over all combinations of attributes, whose number grows
exponentially as the number of attributes increases, and quickly becomes
computationally intractable. The second method is therefore often more tractable
and we use it to estimate population uniqueness in the paper.

For cumulative marginal distributions F1, F2, …, Fd and copula correlation
matrix Σ, the algorithm 1 (Supplementary Methods) samples n individuals from
q(⋅|Σ,Ψ) using the latent copula distribution. From the n generated records (y(1),
y(2), …, y(n)), we compute the empirical uniqueness

ΞX ¼ 1
n

i 2 ½1; n� = 8j≠i; yðiÞ≠yðjÞ
n o��� ��� ð16Þ

Individual likelihood of uniqueness and correctness. The probability distribu-
tion qð� jΣ;ΨÞ can be computed by integrating over the latent copula density. Note
that the marginal distributions X1 to Xd are discrete, causing the inverses F�1

1 to
F�1
d to have plateaus. When estimating p(x), we integrate over the latent copula

distribution inside the hypercube ½x1 � 1; x1� ´ ½x2 � 1; x2� ´ ¼ ´ ½xd � 1; xd �:
qðx jΣ;ΨÞ ¼ Pðx1 � 1<X1 � x1; ¼ ; xd � 1<Xd � xd jΣ;ΨÞ ð17Þ

¼
Z F�1

1 ðx1 jΨÞ

F�1
1 ðx1�1jΨÞ

¼
Z F�1

d ðxd jΨÞ

F�1
d ðxd�1jΨÞ

cΣðuÞ du ð18Þ

¼
Z ϕ�1ðF�1

1 ðx1 jΨÞÞ

ϕ�1ðF�1
1 ðx1�1jΨÞÞ

¼
Z ϕ�1ðF�1

d ðxd jΨÞÞ

ϕ�1ðF�1
d ðxd�1jΨÞÞ

ϕΣðzÞ dz ð19Þ

with ϕΣ the density of a zero-mean multivariate normal (MVN) of correlation
matrix Σ. Several methods have been proposed in the literature to estimate MVN
rectangle probabilities. Genz and Bretz47,48 proposed a randomized quasi Monte
Carlo method which we use to estimate the discrete copula density.

The likelihood ξx for an individual’s record x to be unique in a population of n
individuals can be derived from pX(X = x):

ξx � pXðx unique in ðxð1Þ; ¼ ; xðnÞÞ j 9i; xðiÞ ¼ xÞ ð20Þ

¼ pXðx unique in ðxð1Þ; ¼ ; xðnÞÞ j xð1Þ ¼ xÞ ð21Þ

¼ pXð8i 2 ½2; n�; xðiÞ≠xÞ ð22Þ

¼ 1� pðxÞð Þn�1 ð23Þ

bξx ¼ 1� qðx jΣ;ΨÞð Þn�1

Similarly, the likelihood κx for an individual’s record x to be correctly matched
in a population of n individuals can be derived from pXðX ¼ xÞ. With
T � Pn

i¼1 xðiÞ ¼ x
	 
� 1, the number of potential false positives in the population,

we have:

κx � Pðx correctly matched in ðxð1Þ; ¼ ; xðnÞÞ j 9i; xðiÞ ¼ xÞ ð24Þ

¼
Xn�1

k¼0

1
kþ 1

PðT ¼ kÞ ð25Þ

¼
Xn�1

k¼0

1
kþ 1

n� 1

k

� �
pðxÞkð1� pðxÞÞðn�1�kÞ ð26Þ

¼ 1
n pðxÞ 1� 1� pðxÞð Þnð Þ ð27Þ

Note that, since records are independent, T follows a binomial distribution
B(n− 1, p(x)).

We substitute the expression for ξx in the last formula and obtain:

κx ¼
1

n pðxÞ 1� 1� pðxÞð Þnð Þ ð28Þ

¼ 1
n
1� ξn=ðn�1Þ

x

1� ξ1=ðn�1Þ
x

ð29Þ

Data availability
The USA corpus, extracted from the 1-Percent Public Use Microdata Sample (PUMS)
files, is available at https://www.census.gov/main/www/pums.html. The 5% PUMS files
used to estimate the correctness of Governor Weld’s re-identification are also available at
the same address. The ADULT corpus, extracted from the Adult Income dataset, is
available at https://archive.ics.uci.edu/ml/datasets/adult. The HDV corpus, extracted
from the Histoire de vie survey, is available at https://www.insee.fr/fr/statistiques/
2532244. The MIDUS corpus, extracted from the Midlife in the United States survey, is
available at https://www.icpsr.umich.edu/icpsrweb/ICPSR/series/203. The MERNIS
corpus is extracted from a complete population database of virtually all 48 million
individuals born before early 1991 in Turkey that was made available online in April
2016 after a data leak from Turkey’s Central Civil Registration System. Our use of this
data was approved by Imperial College as it provides a unique opportunity to perform
uniqueness estimation on a complete census survey. Owing to the sensitivity of the data,
we have only analyzed a copy of the dataset where every distinct value was replaced by a
unique integer to obfuscate records, without loss of precision for uniqueness modeling. A
complete description of each corpus is available in the Supplementary Information.

Code availability
All simulations were implemented in Julia and Python. The source code to reproduce the
experiments is available at https://cpg.doc.ic.ac.uk/individual-risk, along with
documentation, tests, and examples.
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