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Abstract—The utility of anonymous communication is un-
dermined by a growing number of websites treating users of
such services in a degraded fashion. The second-class treatment
of anonymous users ranges from outright rejection to limiting
their access to a subset of the service’s functionality or imposing
hurdles such as CAPTCHA-solving. To date, the observation of
such practices has relied upon anecdotal reports catalogued by
frustrated anonymity users. We present a study to methodically
enumerate and characterize, in the context of Tor, the treatment
of anonymous users as second-class Web citizens.

We focus on first-line blocking: at the transport layer, through
reset or dropped connections; and at the application layer,
through explicit blocks served from website home pages. Our
study draws upon several data sources: comparisons of Internet-
wide port scans from Tor exit nodes versus from control hosts;
scans of the home pages of top-1,000 Alexa websites through every
Tor exit; and analysis of nearly a year of historic HTTP crawls
from Tor network and control hosts. We develop a methodology
to distinguish censorship events from incidental failures such as
those caused by packet loss or network outages, and incorporate
consideration of the endemic churn in web-accessible services
over both time and geographic diversity. We find clear evidence
of Tor blocking on the Web, including 3.67% of the top-1,000
Alexa sites. Some blocks specifically target Tor, while others result
from fate-sharing when abuse-based automated blockers trigger
due to misbehaving Web sessions sharing the same exit node.

I. INTRODUCTION

Anonymity networks serve an important purpose on the
Internet. They often provide the only means for citizens to
access or distribute censored or restricted content without a
threat to their privacy or even safety. A predominant example
of such a network is Tor [6], the ‘king of high-secure, low-
latency Internet anonymity’ according to the NSA [25]. The
success of such networks depends on their utility, i.e., the
degree to which they provide not only acceptable performance
but also unfettered access to the global Internet.

Traditional threats to Tor involve deanonymization attacks
that reduce user privacy, or governments blocking access to the
Tor network. A different kind of threat, which we explore in
this paper, involves websites providing Tor users with degraded
service, resulting in them effectively being relegated to the role
of second-class citizens on the Internet [4]. Such differential
treatment ranges from websites employing wholesale blocking
of Tor-related IP addresses to requiring Tor clients to complete
CAPTCHAs before continuing. The problem becomes ampli-
fied when ‘bottleneck’ web services (e.g., CloudFlare, Akamai)
whose components are used by many other websites block or
discriminate against Tor users, or when third-party blacklists
used by a large number of websites include Tor infrastructure
(in particular, exit node) IP addresses.

Addressing the Web’s second-class treatment of Tor users
begins with enumerating and characterizing its prevalence.
Thus far, efforts to do so have been ad hoc; effectively by
cataloging reports from frustrated users about services that
routinely employ such practices [27]. In this work, we carry
out a broad, systematic enumeration and characterization of
websites and IP addresses that treat Tor users differently from
normal connections. We run two complementary measurement
campaigns. 1) At the network layer, we scan the entire IPv4
address space (with a small exclusion list) using a modified
version of ZMap [8]. We run the scans from a select number
of active Tor exit nodes as well as non-Tor control nodes. 2) At
the application layer, we probe the top 1,000 Alexa Web sites
using Exitmap [29]. We fetch home pages of these sites using
Tor and non-Tor nodes and analyze the responses to uncover
evidence of Tor blocking.

We demonstrate the existence of differential treatment of
Tor users at both the network and application layers. At the
network layer, we estimate that at least 1.3 million IP addresses
that would otherwise allow a TCP handshake on port 80 block
the handshake if it originates from a Tor exit node. We also
show that at least 3.67% of the top 1,000 Alexa web sites
block Tor users at the application layer.

We explore the reasons and techniques used by these
websites, and how much of this differential treatment is due to
explicit decisions to block Tor versus the consequence of fate-
sharing due to automated abuse-based blocking. We identify
two kinds of network-layer blocking: wholesale blocking by
Autonomous Systems (ASes) such as access ISPs, and more
targeted (likely abuse-driven, and thus implicit) blocking prac-
ticed by content hosting sites and service providers.
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While wholesale blocking of Tor as a matter of ISP or
national policy will likely always exist, our results highlight a
growing concern that anonymity networks are being negatively
affected beyond explicit blocking, due to the desire of web
services to block abuse. In this work we contribute a systematic
methodology and measurement study of the scale of blocking
of anonymity networks, both at the network layer (Section IV)
and the application layer (Section V). Our work provides a first
step towards addressing this problem by methodically uncov-
ering and characterizing the nature of blocking of anonymity
networks as seen at scale.

II. BACKGROUND

For our anonymity system case study, we analyse Tor [7],
the most widely used anonymous communication system, with
over 2 million daily users [22]. Tor was designed to allow
users to access TCP-based services (predominantly websites)
privately and securely, preventing any intermediate agent from
linking the user’s identity to their activities. However, many
Tor users primarily seek to circumvent censorship rather than
to obtain privacy. Blocking access from Tor imposes serious
limitations for Tor users, and has significant implications for
Tor itself, potentially reducing its utility substantially. We
provide a brief background on Tor’s design and the different
ways it is blocked.

A. Tor

Tor works by routing users’ traffic over a three-hop ‘cir-
cuit’, with each hop being a volunteer-operated ‘node’ running
the Tor software in server mode. Tor uses both per-link and
end-to-end cryptography to provide confidentiality, integrity,
and unlinkability between incoming and outgoing traffic at
each hop. Tor users typically install the Tor Browser Bundle,
which consists of a hardened Firefox-based browser and the
Tor software configured as a client. When a user makes a
request, the Tor client selects three nodes out of those available
to form a circuit, connecting first to the ‘entry guard’, then
through it to the ‘middle node’ and finally to the ‘exit node’.

The exit node makes the TCP connection to the desired
service and so is also the first target for abuse complaints from
operators. For this reason, not everyone is willing to operate
an exit node, and the Tor server configuration allows operators
to set an ‘exit policy’ stating to which IP addresses and ports
the node will carry exit traffic. When a node activates (and
periodically afterwards), it publishes a ‘descriptor’ to each
of the ‘directory authorities’ which includes the IP address
and port at which circuits can connect to the node, its exit
policy, and its public key. The directory authorities together
form and digitally sign the ‘directory consensus’, which they
make available to clients both directly and via Tor nodes that
act as ‘directory mirrors’.

The directory consensus includes the information from
each node’s descriptor, but also includes a set of flags indi-
cating in which positions a node can serve in the circuit (only
sufficiently fast and stable nodes can serve as entry guards,
and only nodes with a sufficiently permissive exit policy as
exit nodes). Furthermore, the consensus includes a ‘consensus
weight’ for each node, which is an integer proportional to the
node’s bandwidth capacity as measured by a set of ‘bandwidth

authorities’. When selecting a node for each position in the
circuit, clients first identify all the nodes that can take the
respective position, and then select from these randomly, but
biased by the consensus weights such that in aggregate they
place a network load on Tor nodes in proportion to their
capacity [23].

Due to its ability to circumvent censorship, the Tor network
itself is subject to censorship. The simplest form consists of
blocking access to the entry nodes by their IP addresses (which
are easily found from the directory consensus). To counter this
threat, Tor maintains a set of Tor nodes (‘bridges’) that act
as entry points to the network but are not publicly listed in
the consensus. Bridges are instead distributed to individuals in
censored countries, making them harder to block reliably [6].

In reaction to this move, some countries fingerprint Tor
traffic to block it, so Tor now allows the integration of
‘pluggable transports’ [24] that disguise the characteristics of
Tor traffic. The use of bridges and/or pluggable transports does
not affect how traffic exits the Tor network, so for the purposes
of our study we do not deal with them specially.

B. Blocking/Filtering Tor

It is technically easy for Internet sites to block traffic from
Tor relays on a wholesale basis, as there exist readily accessible
and regularly updated lists of Tor relays. Internet services may
have different reasons to apply such blocking: to discourage
contributions by anonymous users, or avoid abuse such as
comment spam. Inevitably, some well-meaning users will be
excluded due to how widely Tor shares exit nodes across many
users.

The first step to construct a Tor-specific blacklist is to
collect the IP addresses of exit nodes. The easiest approach
is to collect the IP addresses from the node descriptors in
the directory consensus. However, these addresses denote the
incoming IP address for nodes, and for nodes with multiple
IP addresses this will not necessarily be the IP address for
outgoing connections. As a result, using the IP addresses from
the consensus could lead to both overblocking (by blocking the
incoming IP address even though it is never used for outgoing
exit traffic, but may have other uses) and underblocking (by
failing to block the outgoing IP address because it is not an
incoming address for any node). A more robust approach is
‘active probing’ by making Tor circuits that use each exit
node in turn to establish a connection to a test server, and
observing the originating IP address. This approach increases
the accuracy of the list but puts more load on the network and
reduces the frequency at which the list can be easily updated.

The second decision is which nodes to consider to be exits.
The easiest option is to use the ‘exit’ flag assigned by the
directory authorities if the node’s exit policy permits at least
two ports from 80 (HTTP), 443 (HTTPS) and 6667 (IRC)
to at least one /8 IP address range [23]. Relying on the exit
flag results in overblocking because it is possible that an exit
node will never be selected for a connection to a particular
service using the blacklist even if it has the exit flag set
(perhaps the service’s IP address and/or port is excluded by the
node’s exit policy). Therefore non-Tor users of the computer
hosting the exit node will be blocked from accessing the
service even though there is no possibility that this computer

2



will be the origin of Tor-originated abuse. There may also be
underblocking if the node does not meet the criteria for the exit
flag but its exit policy still permits connecting to the service
in question.

Finally, the blacklist operator may decide to include some
non-exits in the list (e.g., including nodes that have a ‘deny all’
exit policy and so can only be entry guards or middle nodes,
or including IP addresses on the same netblock as Tor nodes).
This approach is especially pernicious, as it leads to blocks
of bystander IP addresses in ways that have little to do with
Tor-sourced abuse. Motivations for doing so may include a
desire to deter people from running Tor servers, or to mitigate
underblocking that may occur as a result of missing Tor server
configuration changes or mismatches between incoming and
outgoing IP addresses for the node.

Examples of publicly available Tor blacklists include
dan.me.uk [1], which optionally includes non-exit Tor
nodes, and dnsbl.sectoor.de [19], which includes all
IP addresses on the same /24 as the Tor exit by default. The
Tor project itself maintains TorDNSEL [21], which uses active
probing to increase accuracy, and also takes into account the
specific service using the blacklist so as to reduce overblocking
and underblocking.

To avoid complications resulting from these different ap-
proaches to blacklisting, we run our control probes from
systems that did not share a /24 IP address with any Tor node,
and our Tor-based probes from exit nodes that had the exit flag
for at least a month, as well as permitting access to almost all
IP addresses on port 80 (the destination port for our probes).

III. RELATED WORK

We consider Internet censorship relevant to Tor from three
perspectives: direct censorship of content, censorship of traffic
entering Tor, and censorship of traffic exiting Tor. A large and
growing body of literature focuses on the first two classes, but
the latter category has seen little in the way of study; our work
aims to fill this gap.

Much existing work has focused on measuring and evading
direct content blocking in different countries. Prior work has
also focused on government blocking of censorship circum-
vention systems. Dingledine et al. [5] discuss when and how
different governments tried to block access to Tor; govern-
ments mainly use address-based blocking of requests to the Tor
website, relays, and bridges, and protocol-based blocking of
TLS connections to the Tor network identified by Tor specific
characteristics (for example, cipher suite).

Our work focuses on a different aspect of the censorship
problem: we examine server-side blocking of clients; that
is, blocking by the server based on the characteristics of
the source, not blocking by an intermediate firewall based
on characteristics of the destination. In the classical Internet
censorship scenario, the server would be happy to accept
connections from a client, but some network device near the
client prohibits it. We, on the other hand, look at cases where
the client’s connection arrives at the server unimpeded, but the
server (or something working on its behalf) rejects it.

In our work we make use of data from the Open Ob-
servatory of Network Interference (OONI) [17]. (Despite a

similarity in purpose and acronym, this project is separate from
the OpenNet Initiative discussed above.) The OONI dataset
has a crucial feature for studying differential treatment of
Tor users: it consists of many simultaneous downloads both
with Tor and without Tor. While the intent behind these
measurements is to highlight content that is inaccessible from
certain locations unless one uses Tor, we can employ the same
information to identify destinations inaccessible because one
uses Tor.

Developing robust techniques to detect blocking is also
important. We need to know when an application is being
blocked, and we also need to distinguish genuine network
interference from benign or transient failures. Jones et al.
tested automated means of detecting censorship block pages
in an OpenNet corpus [13]. A metric based on page length
proved the best-performing of several options. Our experiments
necessitate different ways of detecting blocks at different
network layers. In Section IV we use repeated scans across
space and time, and in Section V we compare test downloads
against simultaneous control downloads.

IV. MEASURING NETWORK-LAYER DISCRIMINATION

As we discuss in Section II, a straightforward technique for
services to block Tor is to filter traffic from publicly listed exit
nodes. To broadly assess this, we measure Tor filtering using
ZMap probing from both Tor exit nodes and from control (non-
Tor) nodes to see how their access to remote addresses differs.
For convenience we term these measurements as assessing
‘network-layer’ discrimination, though from a technical per-
spective they combine measurement of layer-3 and layer-4
blocking, since we restrict our measurements to attempts to
connect to TCP port 80 services.

A. ZMap

ZMap is a high-performance network scanner capable
of scanning the entire IPv4 address space in as little as
45 minutes, much faster than traditional scanners such as
Nmap [8]. ZMap achieves this efficiency by incorporating
multiple optimizations, including randomized target selection
and maintaining no connection state. Because ZMap does not
maintain state, it also does not retransmit probes in case of
loss. We used ZMap for test runs of the entire IPv4 address
space starting in Spring 2015. Over the course of repeated
experiments, we uncovered several bugs (for some of which
we contributed fixes, while others were fixed by the ZMap
team), addressed measurement considerations (for avoiding
measurement loss), and added extra functionality as discussed
below. For our measurements we recorded both TCP SYN-
ACKs and RSTs. We configured ZMap to run at 100 Mbps
rather than at 1 Gbps to avoid saturating our local networks.
Doing so results in one scan taking about 7 hours rather than
45 minutes.

B. Overview of measurements and block detection

We run our scans from Tor exit nodes and from two sets
of control nodes: university nodes and a Tor middle node. We
compare responses to our Tor scans with those from the base-
line control scans and flag deviations as potentially reflecting
discriminatory blocking. Target hosts respond to ZMap probes
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Fig. 1: Distribution of time until receiving a response packet since the last
probe was sent for a full scan of IPv4.

(TCP SYNs) in one of three ways: a) sending a SYN-ACK,
which we term a successful response; b) sending a RST, which
we term an unsuccessful response; or c) not responding, which
we also deem an unsuccessful response. ZMap, by default, only
records successful responses; we modified it to record RSTs
as well. We note that for an individual probe it is not possible
to distinguish a lack of response from packet loss.

We might in simple terms think we can identify Tor
blocking by observing destination addresses that respond to
probes from our control nodes but not those from our Tor
exit nodes. However, this reasoning has two main limitations:
1) Unsuccessful responses could arise due to packet loss along
either the packet forward or return path; and 2) Destinations
can respond inconsistently to probes due to factors unrelated to
discriminatory blocking, such as servers only operating during
certain hours of the day or days of the week.

More generally, we need to consider issues of churn: how
Internet service reachability varies, in both spatial and temporal
terms. By spatial churn we mean the notion that simultaneous
probes sent from topologically separate clients to the same
server might yield different outcomes, for example due to
network congestion or a network outage blocking the path
from one of the clients but not the other. By temporal churn
we refer to the reachability from the same client to the same
server varying over the course of time, for example due to day-
of-the-week effects governing when the server is accessible.

Thus, to understand how to soundly compare probe out-
comes seen at our control nodes versus from Tor nodes, we
need to incorporate consideration of how to distinguish probing
results that differ due to churn versus those that actually reflect
discrimination. Note that through the rest of our discussion, the
underlying assumption is that services either completely block
a Tor exit node or allow it. We do not deal with selective
blocking or rate-limiting in this paper.

C. Mitigating the Impact of Packet Loss

As noted above, ZMap does not allow us to distinguish
between a single non-response and a packet loss event. To
account for this limitation, we take care to minimize measure-
ment loss in our measurements and to account for potential
packet loss in the network.

1) Mitigating Measurement Loss: We first ask whether
ZMap accurately sends all the packets it is configured to send,
and whether it correctly logs packets and responses.

We profiled ZMap using an experimental setup that consists
of a well-provisioned machine running ZMap, and a separate
machine running a packet capture. All the ZMap packets are
directed to the second machine via a Gigabit Ethernet cable.
Separating packet transmission and packet capture allows us to
account for losses occurring due to both ZMap itself and the
underlying network card. It also avoids the scenario where the
two processes compete with each other for CPU cycles. When
ZMap runs with its default configuration, we see a 6.7% failure
rate—this failure is completely eliminated when we throttle
our sending rate down from 1 Gbps to 100 Mbps. (During
this process, we also identified and reported a bug in ZMap
that caused it to not send certain packets due to the interaction
between scan targets, the blacklist and thread-level sharding.)

In addition, we need to configure a timeout for ZMap to
deem that a packet did not receive a response. Figure 1 shows
the distribution of the time measured between sending the
last scan packet and receiving a response for a full scan of
IPv4. To generate this plot, ZMap logged response packets
for 25 minutes after sending the last scan packet. More than
95% of all replies (excluding RSTs), and 80% of RSTs arrive
within the first 30 seconds, while the rest trickle in up until
500 seconds. Though unusual, late responses could arise due to
backed-off timers in the case of SYN-ACKs, huge bufferbloat,
or initial latency incurred by extensive setup requirements of
cellular wireless devices [18]. Given this data, we chose a
conservative cooldown value of 10 minutes for responses to
come in.

2) Network Packet Loss: An unsuccessful response can be
due to loss on the paths between the scanner and the destina-
tion, caused by transient network issues such as congestion or
network failure. We reduce such noise by sending redundant
probes per destination. If any of the probes elicits a SYN-
ACK from the destination, we treat it as a successful response,
because a single response suffices to inform us that the target
server does not block Tor traffic.

We can introduce probe redundancy in many ways; the
simplest is by conducting back-to-back scans from the same
vantage point. However, since a single scan takes about 7 hours
to complete, such an approach introduces a large gap between
the redundant probes, which can lead to inconsistent responses
due to temporal churn. We ran 3 back-to-back scans from one
of our control vantage points. We observed a temporal churn
between the first two scans of 13.30%, which increased to
21.61% when computed across the three scans. We repeated
the experiment at another of our control vantage points and
made similar observations. This finding means that servers
respond quite inconsistently across large intervals of time.

This high temporal churn motivates us to incorporate re-
dundancy at shorter timescales in our measurements. Although
ZMap allows us to send multiple probes per target in a single
scan, it does so back-to-back without any delay between
them. This approach only helps if loss events are independent;
however, transient network issues mean that loss events are
presumably not independent.
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Control nodes
Number of control nodes 3
Number of IPv4 scans 7 per control node
Time span of scans Aug 7–13
Scanned IP addresses per measurement 3,662,744,599
Average hit-rate per measurement 1.91% (σ=0.01%)
Average (estimated) network loss 0.84% (σ=0.18%)
Tor exit nodes
Number of exit node 4
Number of scans 4 per exit node
Time span of scans Aug 10–13
Average hit-rate per measurement 1.87% (σ=0.03%)

TABLE I: Summary of control and exit node data. For all scans, we filtered
out IP addresses included in the largest blacklist, that is, one employed by
the last scan. Network loss per measurement is estimated as the percentage of
IP addresses inaccessible from a node but accessible from at least one other
node.

Since ZMap does not keep state, we cannot retransmit only
those for which we did not receive a response. We therefore
follow the simple strategy of sending K probes, resending
them, sending another K probes, resending them, and so on.
For K = 1, 000, 000 and with a sending rate of 100 Mbps,
this means that the retransmitted probe follows 6.7 sec after
the original. This approach allows us to maintain the sending
bandwidth and allows us to keep ZMap as a single threaded
process; however, and although, as expected, it doubles the
length of a full scan. Across three sites and four scans,
we found that factoring in responses to retransmitted probes
increases the response rate for original probes by 1.04% (we
can distinguish these by sending retransmissions from different
ports). We further observe that there is a temporal churn of
1.93% between 6.7 sec apart scans, which is significantly lower
than 13.30% churn for scans run back-to-back (effectively ≈7
hours apart).

D. Data

We run our measurements from a set of three control nodes
and a set of four Tor exit nodes. Two control nodes are located
in US universities and one in a European university. The
control node measurements serve a dual purpose: they allow
us to calibrate and understand our measurement method and
the data, and they serve as the baseline measurements against
which we compare the Tor exit node measurements.

Our first goal is to develop a global ‘web footprint’, a
set of IP addresses that respond to our scans on port 80. On
average, a control node sees a hit rate of 1.91% (σ=0.01%) per
measurement scan (translating to ≈ 70 million IP addresses).
We note that each scan consists of two probes per target IP
address (Section IV-C2); and a ‘hit’ consists of SYN-ACK
response to our SYN for at least one probe. This number is
roughly constant across the three locations. However, due to
multiple reasons, including routing and transient failures, net-
work policies, time-of-day effects, and regular usage patterns,
no two scans return the same set of IP addresses (the issue of
churn discussed previously).

We first conducted extensive preliminary ZMap scans (on
the order of 90 scans over a period of 3 months) in order
to calibrate the accuracy of our measurement methodology

●

●

●

● ●

●

2 3 4 5 6 7

4.
0

5.
0

6.
0

7.
0

Day

N
um

be
r 

of
 n

ew
 IP

 a
dd

re
ss

es
 x

10
6

●

●

●

● ●

●

●

●

●
● ●

●

o
o
o

Cambridge
Michigan
Berkeley

Fig. 2: Number of new IP addresses each control node sees per day.

and address problems that arose. The scans all employed a
blacklist excluding IP addresses, which we added to whenever
we received a request. We run web servers on our control nodes
that identify our scanning activity as research and provide an
email address for sites to opt out of further scanning. .
During our measurements from March to August 2015, we
received scan exclusion requests from a total of 134 unique
email addresses for 426 networks (covering a total of 3,532,751
hosts). Note that this number provides an upper bound as the
machines at Michigan and Berkeley use site-wide scan notices,
implying that a complaint could have been triggered by any
of the scans running from these sites .

Once fully developed and debugged, for our final analysis
we gathered 37 full IPv4 scans over a period of 7 days,
conducting 16 from four Tor exit nodes. Table I shows the
breakdown of the measurements run from the control and
Tor exit nodes. We now turn to analyzing the final data to
understand temporal churn—how the footprint changes across
scans spanning multiple days—and spatial churn—how our
view of the global web footprint set changes across the three
control locations.

a) Temporal Churn: For the same location, we see
significant differences in the number of IP addresses that
successfully respond, even between consecutive days, ranging
up to 17%. Figure 2 shows the number of new IP addresses
that each site successfully contacts per day. Using the first day
as the baseline, this value somewhat gradually drops from a
peak of about 7 million on the second day to about 4 million on
day 7. The slow convergence rate indicates that temporal churn
remains high even for the same location, and that obtaining a
true underlying web footprint for a given location may not be
well-defined. Temporal churn is likely caused by nodes that
only come online occasionally; however we do not investigate
the reasons in this paper.

b) Spatial Churn: Not all IP addresses respond to all
three control locations, even though we initiated the control
scans all at the same time for each run. One potential cause
for this phenomenon is wide-area routing issues. We identify
IP addresses that only successfully responded to one or two lo-
cations (not all three) as reflecting spatial churn, corresponding
to about 3.66% (about 3.7 million) of responding IP addresses
across the footprints from the three control nodes. Upon further
investigation, we observed that 52% of this spatial churn arose
from IP addresses accessible from only one of the control
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Exit Node Location Uptime Bandwidth (MB/s)
Axigy1 USA 35 days 31.09
Axigy2 USA 76 days 31.46
NForce2 Netherlands 35 days 31.46
Voxility1 Romania 1 day 17 hr 16.99

TABLE II: Description of Tor exit nodes from which IPv4 scans were
conducted.

nodes. We tested a handful of these IP addresses manually
and confirmed this behavior, ruling out that it reflected a ZMap
problem.

Given the significant amount of spatial and temporal churn,
we settle on two definitions of web footprint to use for our
analysis. 1) a LAX definition, where we only remove cases of
spatial churn. For this set, we consider the set of IP addresses
for which all control nodes see a response at least once across
the seven days. 2) A STRICT definition, where we remove
cases of both spatial and temporal churn. We include in this
set only IP addresses for which all control nodes received
a successful response on all days. We find that the RAW
footprint contains 103,329,073 IP addresses (2.82% of the
probed set). LAX footprint is 96% of the RAW footprint,
whereas STRICT reduces the RAW footprint to 50%. For the
purpose of reference and understanding the effect of network
loss on our measurements (§ IV-F), we also report the numbers
for the RAW footprint (response to any control node on any
day).

E. Assessing Network-Layer Discrimination

Having gained confidence in our measurement methodol-
ogy, we now turn to analyzing the resulting data. We conducted
the scans from four high-bandwidth Tor exit nodes for 4 days
(Aug. 10–13, 2015) (Table II). These represent 3% of aggre-
gate Tor exit bandwidth. We note that each exit node hosts 2–3
Tor processes on the same interface. As our 100 Mbps scans
use the same IP address as the Tor exit node, we turned off
all but one Tor process on these machines for the duration of
the experiment to minimize load on the interface and potential
packet loss on the interface and/or the outgoing link. These
preventive measures helped reduce our reported pcap loss on
the exit nodes to 0.001% of the typical number of responses
seen per scan. We also chose Tor instances that use the same
IP address for incoming and outgoing Tor traffic to allow our
scans to trigger even ‘lazy’ blacklists.1 For three of the exit
nodes, we displayed our scan notice page on port 8080 instead
of the usual port 80, as the latter already displayed a separate
Tor abuse complaint page.

Our basic technique for flagging network-layer discrimina-
tion of Tor is to identify the part of the Web footprint that never
produces a successful response to a Tor exit node. We examine
this separately for each exit node, as we do not assume that all
the exits are blocked consistently. Once we have extracted this
subset for an exit node, we scan the suspicious IP addresses
5 times from the corresponding exit node and discard IP

1The easiest approach to blacklist Tor is to block IP addresses from the node
descriptors in the directory consensus that denote the incoming IP address for
nodes. This blacklisting approach fails to cover nodes that use a different IP
address for outgoing traffic, per Section II-B.

addresses that respond successfully at least once, effectively
reducing our false positives. As a result of this last step,
the blocked IPs per exit node reduce on average by 7.70%
(σ=2.82%) for RAW footprint, 8.94% (σ=3.23%) for LAX
footprint, and 1.05% (σ=0.74%) for STRICT footprint. We
note that our approach does not account for transient IP layer
blocking such as abuse-based filtering. However, assuming that
transient IP blocking is enforced for a time window smaller
than 4 days, we may still observe a successful response in
scans conducted before or after the transient block. Using this
methodology, we characterize Tor blocking for both LAX and
STRICT Web footprints.

Table III shows the breakdown of the Tor blocking we
detect. We detect a significantly higher rate of blocking for the
LAX footprint compared to STRICT (13.01–16.14%, and 1.23–
2.59%, respectively). This discrepancy could be caused by
multiple factors. First, the LAX footprint is more than double
the STRICT footprint, due to the weaker selection criteria. This
means that it is likely to see larger churn and therefore has a
larger potential for false positives. Second, as we see next,
the LAX footprint exposes large access ISP networks, which
potentially block Tor across the whole network. Due to the
transient nature of nodes in such networks, they are less likely
to be seen in the STRICT footprint.

Tables IV and V show the breakdown of the ASNs that
block Tor. Tables IV shows the distribution by the number of
IP addresses in an ASN that block Tor, for both the LAX and
the STRICT footprints. We see that the ASNs in the STRICT
footprint are dominated by hosting services, which suggests
that could be policy or abuse-driven. The LAX footprint
contains ASNs that are potentially access and mobile ISPs,
such as CHINANET, BSNL, and Airtel. These ISPs likely
enforce symmetric blocking of Tor. Because they are access
ISPs, nodes in these networks are more likely to go offline,
which explains their absence in the STRICT list. We note that
ASes of IPs in LAX footprint that block Tor traffic mostly
originate in countries that are notoriously known for their
censorship practices, such as China and Iran. Thus far these
countries have been reported to block access to Tor network,
but our results suggest that traffic coming from Tor network
may also be blocked either as a policy or as an unintended
effect of the mechanism of censorship chosen.

Table V shows a similar result sorted by the proportion of
servers within a given ASN that block Tor. We see a higher
prevalence of hosting sites in both LAX and STRICT.

F. Calculating effect of network loss

The possibility of losing our probes or their responses due
to packet-loss introduces uncertainty as to whether a given
IP address specifically blacklists Tor traffic. In this section
we develop a Bayesian analysis of this uncertainty so as to
provide error bounds on the estimates we derive from our
measurements of Tor-blocking.

For the purposes of error calculation we assume that IP
addresses fall into one of four categories: allowing responses
to all probes received (A), denying responses to all probes (D),
blacklisting probes from Tor nodes, but otherwise responding
(B), and whitelisting probes from Tor nodes, but otherwise
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Footprint IP Addresses Axigy1 (%) Axigy2 (%) NForce2 (%) Voxility1 (%)
orig. ret. orig. ret. orig. ret. orig. ret.

RAW 103,329,073 (2.82%) 16.05 15.48 15.45 14.01 17.66 16.18 16.20 14.65
LAX 99,547,512 (2.72%) 14.09 13.50 13.68 12.19 16.14 14.59 14.63 13.01
STRICT 52,148,437 (1.42%) 1.91 1.91 1.25 1.23 2.59 2.55 1.88 1.82

TABLE III: Web footprint blocked across exit nodes. We show footprint as % of probed IP addresses (3,662,744,599). For each exit node, we present the original
(orig.) block proportion of the footprint and that retained (ret.) after weeding out false positives using 5 verification scans.

Axigy1 (13.50%) Axigy2 (12.19%) NForce2 (14.59%) Voxility1 (13.01%)

CHINA169-BACKBONE,CN (11.33) CHINA169-BACKBONE,CN (11.73) CHINA169-BACKBONE,CN (11.02) CHINA169-BACKBONE,CN (12.53)
CHINANET-BACKBONE,CN (7.42) CHINANET-BACKBONE,CN (8.20) CHINANET-BACKBONE,CN (7.30) CHINANET-BACKBONE,CN (7.93)
Uninet S.A.,MX (3.43) DCI-AS(ITC),IR (3.26) AIRTELBROADBAND-AS-AP,IN (4.31) DCI-AS(ITC),IR
DCI-AS(ITC),IR (2.94) Uninet S.A.,MX (3.00) BSNL-NIB,IN (4.30) Uninet S.A.,MX
BSNL-NIB,IN (2.94) DTAG Deutsche Telekom,DE (2.89) DCI-AS(ITC),IR (2.73) DTAG Deutsche Telekom,DE

(a) LAX Web Footprint (99,547,512 IP addresses forming 2.72% of probed IPv4)

Axigy1 (1.91%) Axigy2 (1.23%) NForce2 (2.55%) Voxility1 (1.82%)

MCCI-AS,IR (11.91) MCCI-AS,IR (18.44) MCCI-AS,IR (8.92) OCN NTT,JP (20.90)
RMH-14-Rackspace,US (10.87) DREAMHOST-AS,US (13.07) RMH-14-Rackspace,US (8.14) MCCI-AS,IR (12.46)
RACKSPACE-Rackspace,US (9.92) KUNET-AS,KR (3.59) RACKSPACE-Rackspace,US (7.43) DREAMHOST-AS,US (8.83)
DREAMHOST-AS,US (8.44) REDSTATION,GB (2.66) DREAMHOST-AS,US (6.32) GO-DADDY-COM-LLC,US (3.51)
Rackspace Ltd.,GB (5.85) SINGLEHOP-INC,US (2.09) BBIL-AP BHARTI Airtel,IN (5.59) FBDC FreeBit,JP (2.56)

(b) STRICT Web Footprint (52,148,437 IP addresses forming 1.42% of probed IPv4)

TABLE IV: ASN distribution (top 5) of IP addresses that block Tor across exit nodes for LAX and STRICT. For each exit node, we show the percentage of
footprint that blocks it, and ASN distribution (%) of blocking IP addresses in the footprint.

Axigy1 Axigy2 NForce2 Voxility1

MCCI-AS,IR DREAMHOST-AS,US RMH-14-Rackspace,US OCN NTT Communications,JP
RMH-14 - Rackspace,US KUNET-AS,KR RACKSPACE - Rackspace,US DREAMHOST-AS, LLC,US
RACKSPACE - Rackspace,US REDSTATION,GB AIRCEL-IN Aircel Ltd.,IN KUNET-AS,KR
DREAMHOST-AS, LLC,US LLC-SK-CONTINENT,RU DREAMHOST-AS, LLC,US BEKKOAME INTERNET INC.,JP
CNNIC-SGATHER-AP,CN tropicalweb-as,MZ Rackspace Ltd.,GB tropicalweb-as,MZ

(a) LAX Web Footprint

Axigy1 Axigy2 NForce2 Voxility1

MCCI-AS,IR MCCI-AS,IR MCCI-AS,IR OCN NTT Communications,JP
RMH-14 - Rackspace,US DREAMHOST-AS,US RMH-14 - Rackspace,US MCCI-AS,IR
RACKSPACE - Rackspace,US KUNET-AS,KR RACKSPACE - Rackspace,US DREAMHOST-AS,US
DREAMHOST-AS,US REDSTATION,GB DREAMHOST-AS,US KUNET-AS,KR
Rackspace Ltd.,GB AS-INTERMEDIA,US Rackspace Ltd.,GB BEKKOAME INTERNET INC.,JP

(b) STRICT Web Footprint

TABLE V: ASN distribution (top 5) by fraction of IP addresses in their subnet that block Tor across exit nodes for LAX and STRICT. As multiple ASNs block
Tor 100%, we further order them by ASN size (the number of IP addresses in an ASN).

P(T ,NT} | A) P(T ,NT} | W ) P(T ,NT} | B) P(T ,NT} | D) P(T ,NT})

T = 0 n2 n2 1 1 (a + w)n2 + b + d
T ∈ {1, 2} (1− n)2 + 2n(1− n) (1− n)2 + 2n(1− n) 0 0 −

(
n2 − 1

)
(a + w)

NT = 0 n2 1 n2 1 an2 + bn2 + d + w
NT ∈ {1, 2} (1− n)2 + 2n(1− n) 0 (1− n)2 + 2n(1− n) 0 −(a + b)

(
n2 − 1

)
TABLE VI: Likelihood of scan outcomes: conditioned on category of target IP address and unconditional.

denying (W).2 In this context, we treat responding with an
error the same as denying responses.

We cannot directly observe which category a node falls
into, but we send two probe packets from either a Tor node

2While the whitelisting case seems unlikely, we need to consider it for a
complete analysis.

or non-Tor node and then count the number of responses (0,
1 or 2) from each: T for the number of successful responses
from the Tor node, and NT for non-Tor node. To estimate
the category given a count we must know the likelihood
P(T | c) and P(NT | c) for each category c ∈ C where
C = {A,W,B,D}.
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P(A | T ,NT}) P(W | T ,NT}) P(B | T ,NT}) P(D | T ,NT})

T = 0 an2

(a+w)n2+b+d
n2w

(a+w)n2+b+d
b

(a+w)n2+b+d
d

(a+w)n2+b+d

T ∈ {1, 2} a
a+w

w
a+w 0 0

NT = 0 an2

(a+b)n2+d+w
w

(a+b)n2+d+w
bn2

(a+b)n2+d+w
d

(a+b)n2+d+w

NT ∈ {1, 2} a
a+b 0 b

a+b 0

TABLE VII: Posterior probability of IP addresses falling into each category given a scan outcome.

If n gives the probability of the loss of a probe packet or
its corresponding response, then, assuming independence, the
probability of losing 0, 1 or 2 packets is (1− n)2, 2(1− n)n,
and n2 respectively. Although the two probes are sent with a
6.7 s delay to reduce correlated loss, we will show how to drop
the assumption of independence later. We assume that for W,
NT = 0; for B, T = 0; and for D, T = 0 ∧ NT = 0, which
corresponds to the definition of the RAW web footprint—a
single non-Tor response means that the IP address is not in D,
and a single Tor response means that the address is not in B.
Given these definitions, Table VI shows the likelihood of each
response given a category, and we can then calculate P(T ) =∑

c∈C P(T | c)P(c) and P(NT ) =
∑

c∈C P(NT | c)P(c). If
we know the network loss rate, receiving 2 packets in response
to a pair of probe packets does not add any more information
than receiving 1 so we combine these two cases. We define
the prior probability of an IP address being in each category
as a for P(A), b for P(B), d for P(D) and w for P(W).

Using Bayes law, we can now calculate the probability
that an IP address is of each category, given the count of
probe responses: P(c | T ) = (P(T | c)P(c))/P(T ) and
P(c | NT ) = (P(NT | c)P(c))/P(NT ), as shown in Ta-
ble VII. We can drop the assumption about independent packet
loss probabilities by noting that the value for n is never
used directly, only n2, so we can specify n2 directly as the
probability of the loss of two consecutive packets, taking into
account any dependence between loss probabilities.

We perform the probability calculation for each IP address
by selecting a row from Table VII based on the type of scan
(Tor or non-Tor) and number of probe responses, then applying
each formula to update the estimate of P(A), P(W), P(B) and
P(D). The formulae depend on the network loss rate n2, as
well as the previous estimates of P(A), P(W), P(B) and P(D)
(a, w, b and d). The first time we calculate the probabilities we
must provide prior probabilities (for which we use the uniform
distribution), but the effect of this choice diminishes as we
consider each new set of probe results.

Note that if we receive at least 1 response to a non-Tor
probe, w = d = 0 and thus P(B | NT ∈ {1, 2}) becomes
equal to P(B | NT = 0). Therefore the probability that a target
IP address is blacklisting Tor depends only on n2, the prior
probability estimates, whether we ever receive a response to a
Tor probe (as then P(B) = 0); whether we receive a response
to at least one non-Tor probe (then P(W) = P(D) = 0); and
the total number of scans we performed.

To estimate n2 we average how often an IP address appears
to be inaccessible from one site, despite being accessible from
at least one of the others. This is always less than 1% so
we take this as a conservative estimate for n2. We can then

compute P(B) for each category of IP address: those outside
of the RAW footprint (NT = 0 for all 7 non-Tor scans), and
those inside the footprint with T = 0 for all 4 Tor scans
have non-zero P(B). IP addresses with T > 0 for any scan
have P(B) = 0. From these probabilities we can estimate
the expected number of blacklisting nodes by multiplying the
number of IP addresses of each category (count) by P(B)
for that category, and taking the normal approximation of
the binomial distribution we can find the 95% confidence
interval as 3 standard deviations of the normal distribution
with µ = count× P(B) and σ2 = count× P(B)(1− P(B)).

Of the 3,662,744,599 IP addresses scanned, 103,329,073
are inside the RAW footprint leaving 3,559,415,526 outside.
For those IP addresses outside the footprint P(B) = 5×10−15

and so the expected number of blacklisting nodes missed is
0.000018 ± 0.012. Of the IP addresses inside the footprint
which never responded to any of the Tor-scans, P(B) = 1 −
1 × 10−8. Therefore the expected number of blacklisting IP
addresses is between 0.15 and 0.16 less than the count for each
exit node studied, with 95% confidence interval between ±1.16
and ±1.22. So overall we can conclude that the number of
scans performed are sufficient to almost completely eliminate
the effect of network loss.

V. APPLICATION-LAYER DISCRIMINATION

We have seen that Tor exit nodes encounter a restricted
Internet at layers 3/4. In this section we describe our experi-
ments to measure layer 7, i.e., application-layer blocking of
Tor users. We base our observations on two data sources:
1) five days of our own intensive scans of 1,000 URLs from a
control server and through every Tor exit node; and 2) a year’s
worth of paired Tor/non-Tor scans of over 2,300 URLs from
the Open Observatory of Network Interference (OONI). OONI
is a global network measurement platform aimed at detecting
censorship and surveillance, one of whose tests is particularly
suited to our study.

There are two main ways Tor users may find themselves
blocked by a server. The server may block Tor users specif-
ically, using a blacklist of Tor exit node addresses. The only
maintenance required is keeping the blacklist up to date.
Alternatively, Tor users may simply be caught up in an
automated blocking system that does not target Tor per se,
but merely reacts to the consolidated traffic of the many
users that come from an exit node. Perhaps the most con-
spicuous current example of this phenomenon is CloudFlare’s
‘Attention Required!’ CAPTCHA page. CloudFlare is a large
content delivery network (CDN) that by default assesses the
‘reputation’ of each client IP address in terms of how much
malicious traffic it has been observed to send, and blocks
attempted access by clients with sufficiently poor reputations.
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Fig. 3: The cumulative distribution of exit probability from 20 randomly
sampled Tor consensuses since September 2014. The bulk of exits have
between 0.001% and 1% probability of being selected. The largest exits tend
to have an exit probability around 5%. The notable rise just above 0.0001% is
an artifact of the bandwidth measurement process; when a node’s bandwidth is
unmeasured for whatever reason, it receives a default bandwidth of 20 KB/s,
giving it a very low exit probability of around 1 in 500,000.

A CloudFlare support page explains that while they do not
specifically target Tor users, ‘due to the behaviour of some
individuals using the Tor network (spammers, distributors of
malware, attackers, etc.), the IP addresses of Tor exit nodes
generally earn a bad reputation’ [3].

Some sites—mainly larger web properties, though not
exclusively—apparently implement their own detection algo-
rithms and custom block pages. Notable examples in this
category are Craigslist and Yelp. Many other sites simply
inherit the blocking behavior of their web host or content
delivery network, which may or may not offer customers
control over the severity of blocking. In this latter case, a single
provider’s policy can affect many websites.

Our first experiment—contemporary scans of Alexa
URLs—provides broad coverage across all Tor exit nodes
over a short time period. The second experiment—analysis of
historic OONI scan data—covers a long time span and more
URLs, but lacks a longitudinal comparison across all exits for
each URL. Figure 3 illustrates the rationale for conducting
our own scans in addition to analyzing past data. Tor clients
do not choose exit nodes with equal probability; each exit is
weighted according to its bandwidth [23, §3.8.3]. Faster nodes
have a greater probability of being used (subject to some other
constraints such as exit policies). The OONI data reflects Tor
circuits made in the ordinary fashion; therefore low-probability
exits are rarely represented. Measuring low-probability exits
is important because it helps to distinguish the two kinds of
blocking: slow exits will appear on blacklists but will have
fewer users and thus be less likely to exceed abuse thresholds.

Our measurements are limited to home pages, except for
about 3% of OONI URLs that include a path component.
The Alexa URLs are only home pages. We know through
experience that some application-layer blocking only becomes
apparent when accessing certain deeper features or pages of
websites. For example, Wikipedia allows Tor users to read but
not to edit articles [28]. Google allows access to its home
page but may present a CAPTCHA or block page when doing
a search. Bank of America does not permit logging in. We did
not undertake to discover such deeper blocks, which would
require extensive additional methodology to conduct in a large-
scale fashion.

A. Contemporary Scans

To measure the differential treatment of Tor users, we visit
Alexa top 1,000 URLs once from all available Tor exit nodes
and once without Tor. For the former, we used Exitmap [29],
a fast and extensible Python-based scanner for Tor exit nodes.
Exitmap uses Stem [12] to connect to the Tor network, and
enables running a module over all available exit nodes. It is
designed to monitor the reliability and trustworthiness of exit
nodes [30] but its basic architecture is generic and it can be
used to run any query.

Exitmap downloads a Tor consensus and extracts the cur-
rently available exit nodes. It then initiates circuits using the
selected exit nodes as their last hop. To improve the perfor-
mance of the scanning process, Exitmap uses two-hop circuits
instead of the default three-hop circuits. (Using single-hop
circuits is not an option because by default, exit nodes do not
allow direct connection from other non-Tor IP addresses [14];
additionally the authors of Exitmap argue that one-hop circuits
may permit exit node operators to treat scanning connections
differently [30, §3.2].)

To measure discrimination against Tor, we send many
HTTP requests per URL: with Tor through every available
exit node, and one without Tor. We use Exitmap to build Tor
circuits and a Python program to send the HTTP requests. Our
experiment of downloading thousands of URLs per exit node
stretched Exitmap past its original design parameters, requiring
us to overcome some scanning challenges. Downloading a
single URL using all the Tor exits requires 45–50 minutes
on average; however much of this time consists of circuit-
construction overhead. We reduced the total scanning time by
running 5 instances of Exitmap in parallel, and downloading
20 URLs at a time through each circuit. With these changes,
visiting 100 URLs through every Tor exit node takes around
1–2 hours on average. By default, Tor rebuilds circuits and
streams each hour. We set configuration parameters to prevent
this.

We collected data for 5 days, from August 10 to August 14,
2015. We selected exit nodes that allow traffic through port
80 and 443. Different runs of Exitmap can select different
exit nodes for two reasons: 1) The Tor directory authorities
release a fresh consensus on available nodes every hour. New
nodes might appear, old nodes might disappear, and nodes can
change their ‘exit policy’ of allowed ports. Thus the available
exit nodes can change every hour. 2) To build circuits Tor
clients need to download ‘enough’ of the network so that they
can construct a sufficiently large number of the possible paths
through the network. By default, Tor uses a value chosen by
the directory authorities, which can change every hour. Thus,
different exit nodes might be selected at different times. During
our data collection period, we collected data from 899–915 exit
nodes. The distribution of the exit probabilities in our dataset
is within the regular range as seen in Figure 3. We have a
good mixture of both high- and low-probability exit nodes. We
noticed that 83%–89% of the circuits succeeded. This success
rate is similar to previous exit scanning studies [30].

Table VIII shows the total number of HTTP requests sent
and responses received on each day. We intend to send 1,000
HTTP requests through over 900 exit nodes. The number of
HTTP requests per exit node should be 1,000, but the average
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Date # Exits Request Response (200) Response (non-200) Non-HTTP Errors
Control Per Exit Control Per Exit Control Per Exit Control Per Exit

Aug 10 908 1000 741.29 992 641.93 1 26.03 7 73.33
Aug 11 915 1000 679.43 985 595.21 3 23.93 12 60.29
Aug 12 905 1000 735.66 986 632.96 6 28.22 8 74.48
Aug 13 915 1000 735.46 989 639.44 4 26.84 7 69.18
Aug 14 899 1000 738.22 989 641.55 2 28.18 9 68.49
Average 908 1000 726.01 98.82% 86.81% 0.32% 3.67% 0.86% 9.53%

TABLE VIII: This table shows the total number of HTTP requests sent and responses received during the 5 days of scanning. On average, over 3.67% of the
Alexa top websites discriminate against Tor (p-value = 0.008)
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Fig. 4: These graphs show the relationship between blocking rate and exit probability. Each dot represents one exit node. The size of a dot represents the age
of an exit (when the node became an exit) in days. Bigger nodes are older than the smaller nodes. The colored dots represent exit nodes blocked by different
sites. (a) The leftmost graph shows the number of exit nodes blocked by bestbuy.com, which is hosted on Akamai. bestbuy.com and other Akamai sites
block over 60% of the exit nodes. (b) The middle graph shows the number of exit nodes blocked by a site hosted on CloudFlare (change.org). (c) The last
graph shows the number of exit nodes blocked by another site hosted on CloudFlare (4chan.org). 4chan.org uses a less strict setting than change.org,
and thus blocks mostly high probability and older exit nodes.

number of requests per exit node was less than 800. This
discrepancy occurs for two reasons: 1) As mentioned in the
previous section, different exit nodes can be selected during
different runs of Exitmap because the available exit nodes
can change every hour. Since our crawl takes over 10 hours
to finish, some of the exit nodes were not available for the
whole span of crawling. 2) Even when the same exit nodes
are selected, some exit nodes are incapable of handling 1,000
HTTP requests because of resource limitations.

We consider a website to discriminate against Tor when it
responds with a 200 ‘OK’ status code when visited without
Tor, and some other valid but non-200 level status code when
visited with Tor. On average, around 3.67% of the Alexa top
1,000 websites responded with a non-200 status code when
visited through Tor (Table VIII), whereas only at most 6 sites
responded with a non-200 code when visited without Tor.
To check whether this difference is statistically significant,
we computed the p-value using permutation test under the
null hypothesis of independence. We chose the permutation
test because it does not assume that the responses of the
experimental units are independent and identically distributed.
In our case, many of the top Alexa 1,000 websites are hosted
on the CloudFlare and Akamai CDNs. For all of these sites,
whether they send a non-200 response to a Tor exit is not
independent. The p-value of the permutation test is 0.008
which shows that web visits through Tor receive different
treatment from the websites. We also encountered around
8% non-HTTP errors such as timeouts and connection resets,
which can be caused by discrimination at layers 3 and 4.

We noticed that no site blocks all Tor exit nodes (Figure 5).
During these five days, on average 15.6 sites out of the Alexa

1,000 top sites blocked over 60% of Tor exit nodes. These
sites include yelp.com (up to ≈ 70% exit nodes blocked),
macys.com (up to ≈ 60%), and bestbuy.com (up to
≈ 66%). The majority of these sites are hosted on Akamai and
Amazon Web Services. The websites on Akamai all show a
403 ‘Access Denied’ block page, which a user cannot bypass.
Yelp and Craigslist have their own block page. Some websites,
e.g., macys.com, return a redirect error that often leads to an
infinite redirect loop. On average, around 69 sites block over
10–50% of the Tor exit nodes (Figure 4). The majority of
these websites are hosted on CloudFlare. On average, around
150 websites block less than 10% of the Tor exit nodes and
the rest of the websites (over 700) do not block any exit nodes
at the home page.

To check whether these blocking events are abuse-based or
Tor-specific, we looked at the age and exit probability of exit
nodes. We assume that abuse-based blocking is more likely
to block old or high-probability exit nodes because they have
more opportunity to attract abuse, while blacklist-based or Tor-
specific blocking tends to block all exits equally. We down-
loaded node exit probabilities and ages from Onionoo [20].
We used logistic regression to determine the effect of the
exit characteristics on blocking rate.3 Overall (across all
measured sites), we did not find any statistically significant
effect; however for specific websites and specific blockers
we found significant effects. We manually tested three sites:
bestbuy.com (on Akamai), change.org (on CloudFlare),

3We acknowledge that logistic regression requires each observation to be
independent which might not be true in our case. We chose logistic regression
because it can handle non-linear relationship and can provide an estimation
of the effect.
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Fig. 5: This figure shows 100 websites among the Alexa top 1,000 sites that
block most Tor exit nodes. Each row represents one website. Each column
represents one exit node. A blue bar represents a blocking event; that is, the
web server responded with a 200 status code when accessed without Tor and
another valid but non-200-level HTTP response when accessed with Tor. No
site blocked every exit node. During our scan, on average 15 sites blocked
over 50% of the exit nodes; yelp.com, at the top of the figure, is an example
of such a site with a high blocking rate.

and 4chan.org (on CloudFlare with an apparently lower
security configuration). For bestbuy.com, both exit prob-
ability (odds ratio = 2.4 per 1% change in exit probability
with p-value = 0.0098) and age (odds ratio = 1.002 per
day of age with p-value < 0.001) have an effect on blocking
frequency. For change.org, the effect of exit probability
was not significant, but age had a slightly greater effect (odds
ratio = 1.003 per day with p-value < 0.001) than with
the Akamai-hosted bestbuy.com. For 4chan.org, exit
probability had a moderate effect (odds ratio = 1.9 per 1%
with p-value < 0.001) and age had an even greater effect (odds
ratio = 1.004 per day with p-value < 0.001) than the other site
hosted on CloudFlare. We saw that the two CloudFlare sites
did not block any exits younger than about 30 days, while the

Akamai site did. Figure 4 compares the different subsets of
exits blocked by the three sites.

Some sites do not block Tor on their home page but block
other pages or functions. We conducted a small ancillary
experiment on search engines with URLs containing search
queries (as opposed to the URLs of home pages). The home
page of google.com is not blocked for any Tor exit node,
but searching on Google was blocked for 23–40% of them
(varying on different days). We noticed similar behavior in
Yahoo!, where searching is blocked for around 1% of the exits,
but the homepage is always accessible.

We found 42 exit nodes that were not blocked by any of
the Alexa top 1,000 websites during our 5-day crawl. These
exits do not appear to be dedicated Tor exit nodes. All the exits
have similar characteristics: 1) All except one are hosted on
Amazon EC2; 2) their node bandwidth was unmeasured; 3) all
of the exits are turned on and off periodically and were never
up consecutively for more than a month; 4) most of exits were
started and stopped at the same time. We suspect that these exit
nodes were unblocked either because of their low bandwidth
(20 KB/s) or low uptime.

B. Historical Perspective from OONI

For a historical record of Tor blocking, we drew upon scan
data published by OONI, the Open Observatory of Network
Interference [17]. Volunteers run a program called ooniprobe
that runs a variety of network tests and reports the results to
a central collector. The network tests are designed to detect
behavior such as DNS tampering, blocking of anticensorship
proxies, and manipulation of HTTP headers. The oldest reports
are from December 2012 and they continue to the present.

One of ooniprobe’s several tests, http requests [16], suits
our purpose of detecting differential treatment of Tor users very
well. The test takes as input a list of URLs. It downloads each
URL twice: once with Tor, and once without. Both downloads
happen within a few seconds of each other. The results consist
of a set of (Tor, non-Tor) request pairs. Each request in a pair
maps to a response: either an HTTP response with status code,
header, and body; or an indication that an error occurred, such
as a timeout or rejected connection.

The http requests test was intended to discover blocking
by the local network, with the Tor request serving as a control
(uncensored request). We turn the intended methodology on
its head, using the non-Tor request as a control and observing
how the response to the Tor request differs. Within a single ex-
ecution of http requests, each URL is downloaded through Tor
only once, through a single exit node. The same exit node is
reused for multiple URLs, but changes over time (even within
a report) as circuits are naturally rotated. Path selection favors
exit nodes with higher bandwidth (per Figure 3), meaning that
larger exit nodes get tested more often. However, the large
number of available OONI reports means that all but the rarest
exit nodes receive at least some representation.

The list of tested URLs varies across reports. For the
most part, they use the Citizen Lab URL testing lists [2],
which consist of about 1,200 ‘global’ URLs, plus up to
about 900 additional country-specific URLs that depend on
the geographical location where ooniprobe runs. (Versions of
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ooniprobe before October 2014 tested a static list of 1,000
URLs derived from the Alexa top sites.) There are also reports
that use a manually specified URL list. Therefore some URLs
are tested more often than others. We only considered URLs
tested at least 100 times.

Up through July 20, 2015, the raw OONI http requests
data consist of 2,505 reports, 2,574,326 (Tor, non-Tor) request
pairs, and 102,865 distinct URLs. We applied a number of
restrictions to the raw data to obtain a subset useful for our
analysis:

• We discarded reports before September 2014. Reports
from after this date (82% of the total) occur more regu-
larly than those from before it.

• We discarded URLs with a small number (<100) of
request pairs. The great majority of distinct URLs were
tested only a handful of times and thus not appropriate
for our analysis. Though only 2% of URLs occur often
enough, they account for 89% of all request pairs.

• We discarded request pairs where one or both responses
were missing. A response to an http requests probe is
supposed to be either an HTTP response (i.e., with a
status code such as 200), or else an indication of timeout
or rejection. About 20% of request pairs are anomalous
and are missing a response data structure, but they are
concentrated in a tiny fraction of reports and URLs.

In brief, we sought URLs that had been frequently sampled, at
close time intervals, that had meaningful response data. After
applying all these restrictions together, there remained 1,969
reports, 1,727,138 request pairs, and 2,387 unique URLs.

Our basic analysis technique compares the Tor and non-
Tor responses in each request pair. We specifically look for
cases where the Tor request is blocked and the non-Tor request
is unblocked. We consider a URL ‘blocked’ if the request
1) timed out, 2) was rejected, or 3) received an HTTP response
with status code 400 or higher. We treated redirect status
codes like 302 as ‘unblocked’, though it would have caused
us to miss blocks that are effected by a redirect to a block
page, because it is common for sites to serve a redirect for
the base URL (to add or remove a ‘www’ domain prefix, or to
redirect HTTP to HTTPS, for example). We also special-cased
certain other responses, such as HTTP 408 ‘Request Timeout’,
which occurs when the client does not send its request in
time, and is more likely measurement error than blocking. This
method of classifying based on status codes is crude, but it
is tenable precisely because we have paired simultaneous Tor
and non-Tor responses. If a Tor request received an HTTP 403
‘Forbidden’ response, it does not in itself indicate differential
treatment of Tor users. But if, at the same time, a non-Tor
request receives an HTTP 200 ‘OK’ response, it serves as
evidence that the server treats Tor users differently. If both
requests time out, say, or both succeed, then we would not
consider it an instance of discrimination against Tor. For our
purposes, we consider the case where Tor is unblocked and
non-Tor is blocked (which is what the OONI http requests
test was meant to find) the same as both being unblocked (i.e.,
no negative Tor discrimination). This method of comparing
paired responses does away with some of the difficulties in
distinguishing variations that arise due to blocking and benign
variations based on geolocation, for example.

There are some limitations to our approach. Sometimes
servers return block pages with a non-error status such as
200, and we will miss those. The results likely partially
conflate Tor blocking with general anti-bot blocking; i.e., some
blocks may be because of Tor, and others may be because of
ooniprobe. We suspect this is the case for www.amazon.com,
for example (see below). Some installations of ooniprobe run
in censored places. Because of how we count responses, the
worst that happens in that case is that we miss an instance of
Tor discrimination (because Tor and non-Tor both appear to
be blocked).

We now quantify the amount of blocking we observed in
the OONI data. First, we give the overall rates of Tor versus
non-Tor blocking. Recall that each request pair consists of a
Tor and a non-Tor request, each of which may be blocked or
unblocked, leaving four possibilities. The highlighted row is
our focus of interest:

84.4% Both requests unblocked
6.8% Tor request blocked only
1.8% Non-Tor request blocked only
7.1% Both requests blocked

Drilling deeper, we find that a little more than half of
the 6.8% Tor blocking happens at the application layer; i.e.,
block pages served as HTTP responses. The other blocks are
transport-layer rejected connections and timeouts.

6.8% = 0.45% rejects }
transport layer

+ 2.82% timeouts
+ 3.54% HTTP } application layer

Finally, we list the organizations that are responsible for the
most Tor blocking. To categorize blockers, we wrote regular-
expression classifiers and ran them against the OONI HTTP
responses. Together these constitute the 3.54% figure in the
previous table.

2.507% CloudFlare (CDN)
0.362% other
0.349% custom
0.144% Bluehost (web host)
0.126% Akamai (CDN)
0.028% Site5 (web host)
0.028% Convio (web host)

CloudFlare is a content delivery network. It offers an
abuse-based blocking system (turned on by default) that, when
tripped, forces the user to complete a CAPTCHA before
continuing to the site. The next row, marked ‘other’, includes
all pages for which we did not write a specific classifier.
The ‘custom’ row encompasses a wide variety of bespoke
block pages belonging to one specific web site. Sites in this
category include Craigslist and Yelp. Bluehost is a web hosting
company. Akamai is a content delivery network. Site5 and
Convio are web hosting companies.

Figure 7 illustrates the potential impact of a large central-
ized provider. Here, the blocking rate of CloudFlare sites sud-
denly drops, while other forms of blocking remain unchanged.
This means it is possible for one company to have a unilateral
effect on many users’ browsing experience.
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Fig. 6: As Tor exit probability increases, so does the incidence of blocking.
Each dot represents a single exit node and its rate of being blocked, as seen
from nearly a year of OONI measurements. The dark line shows a smoothed
mean of the blocking rate. For clarity, the graph omits some points with a
blocking rate above 15%; these constitute only about 0.5% of the data mass.
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Fig. 7: Tor blocking rates over time. We have separated out CloudFlare blocks
to illustrate both the fact that CloudFlare is the most common blocker (at least
among the URLs in the OONI set), and how CloudFlare’s rate of blocking
decreased, possibly reflecting a policy change.

A small number of block pages explicitly targeted Tor
users. The hosting company Convio sends a simple 501
(Not Implemented) page that says, ‘Not Implemented Tor IP
not allowed’ and offers no opportunity to continue. The site
ezinearticles.com serves a custom 403 (Forbidden)
block page that says, ‘It appears that you are using Tor
anonymizing software. No Problem! We just need you to enter
a Captcha so we can confirm that you are a person and not a
bot.’ The site permits browsing after solving the CAPTCHA.

We conclude this section with a sampling of time series that
compare the patterns of Tor and non-Tor blocking for selected
URLs. These URLs exemplify various types of blocking. It
is possible to distinguish sites that employ a Tor blacklist,
because they have near 100% rates of Tor blocking. We can
readily link sites that share a CDN or web service provider by
temporal patterns in their blocking. In the charts below, each
request pair corresponds to a vertical strip across two rows:
one for the non-Tor request and one for the Tor request. A
light shade in the row means the request was unblocked and
a dark shade means it was blocked.

Blocking as a whole is not all that common. Most URLs
manifest like this one, where potential blocking is scattered,
intermittent, and rare:
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On the contrary, here is an example of a site running on
CloudFlare, the largest source of blocking. Non-Tor is almost

always accessible, while Tor is often—though not always—
blocked. We have found that for sites such as this one, simply
retrying the request with a different Tor circuit often makes
the site accessible.
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Another common blocker is a web hosting service called
Site5. It also disproportionately blocks Tor visitors, though not
at as high a rate as CloudFlare does.
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There are a few sites that evidently employ a blacklist of
Tor exit nodes. Their rate of Tor blocking is nearly 100%.
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Similarly, some sites now have Tor blocks, but were not
always that way. The server www.foxnews.com serves an
Akamai block page to all Tor clients, but only began to do so
in January 2015.
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The web server at www.amazon.com is an interesting
case because of its nearly equal blocking rates of both Tor
and non-Tor traffic. We suspect that this kind of blocking is
not in terms of abuse or proxy blocking per se, but rather
probabilistic anti-bot or anti-crawling detection, that in this
case detects ooniprobe as not corresponding to a human with
a browser. The text on the block page supports this idea: ‘To
discuss automated access to Amazon data please contact. . . ’
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The site HackForums.net used to block both Tor and
non-Tor visitors, Tor at a higher rate. In May 2015 the
site announced on Twitter that ‘Most countries aggressively
blocked again. Sorry but the attack traffic, scammers and spam
are not worth it.’ All of ooniprobe’s request became almost
completely blocked. This reflects the website deploying
anti-bot or anti-crawling detection to mitigate crawling and
spamming by bots.
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VI. DISCUSSION

Based on our measurements we find instances of both
blocking all traffic from Tor exits and cases of fate-sharing,
where ASNs and websites block Tor exit traffic due to em-
ploying automated abuse-based filters. In the case of entities
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that preemptively block all Tor exit traffic, there is little that
can be done beyond detecting instances of this occurring and
publicizing the entities that do so. With abuse-based blocking,
the potential for more precise filtering could enable benign
users to avoid blocking that targets the abusive actions of
other users. Here we discuss several potential methods of
reducing this filtering, more precise abuse-based filtering, and
minimizing the impact of this growing threat to people that
use anonymity networks such as Tor.

A. Anonymous Blacklisting Systems

Anonymity networks, such as Tor, make it more difficult
for ASNs and website operators to discern abusive users from
benign visitors based on IP address, since they cloak the user’s
true IP address. This causes many automated and list-driven
abuse-detection systems to blacklist some or all of the exit
nodes’ IP addresses.

Anonymous blacklisting systems [10], [26] have been
proposed as a method to enable website operators to more
precisely allow benign visitors to access their sites and hold
abusive users accountable for their actions. The goal of anony-
mous blacklisting systems is to allow a website, such as
Wikipedia, to block access to an individual anonymous abusive
user without requiring a trusted third-party that can revoke
a user’s anonymity. This capability would allow websites to
defend themselves against anonymous abusive users using
similar methods as against identifiable users. Most anonymous
blacklisting systems require users to anonymously register
and authenticate with the anonymity network using blind
signatures or zero-knowledge proof techniques, and create
whitelists of permitted users. The registration process must
require anonymous payment or otherwise bind users to scarce
resources, such as IP addresses, to mitigate Sybil attacks.

Adoption of anonymous blacklisting systems has been
negligible due to issues of degraded user privacy—anonymous
blacklisting systems either offer pseudonymity instead of full
anonymity or require a semi-trusted third-party to provide
anonymity—and additional computational overhead [9]. If
these issues could be addressed, anonymity blacklisting sys-
tems might be more widely deployed by anonymity net-
works and website operators, reducing the amount of explicit
anonymity network blocking and fate-sharing experienced by
users of these systems.

B. Contextual Awareness

It is conceivable that anonymity networks could reduce
instances of abuse-based filtering by learning which websites
were blocking certain exit nodes and reroute requests for these
sites to another exit node that was not blocked. This would
likely require application-layer analysis on the exit node that
might be overly invasive from a privacy context.

A less privacy-invasive technique could involve the Tor
Browser displaying a message when filtering is suspected. This
could be done by including block page detection similar to that
used in our study. The browser could also offer to retry the
request using a different exit node. Both of these techniques
could marginally reduce the impact of abuse-based blocking.
However, neither of these approaches directly addresses fate-
sharing issues caused by abuse-based blocking of Tor exit IP

addresses. They also have the potential to trigger an “arms-
race” as abusers could benefit from Tor spreading out abusive
traffic causing more aggressive filtering of Tor traffic by
impacted services.

C. Redesigning Anonymity Networks

Tor and other anonymity networks could attempt to recruit
a larger pool of exit nodes that enables each exit to deliver a
smaller amount of traffic. Our results find a (weak) correlation
between the amount of traffic a node exits and the probability
of a node’s IP address being blocked due to automated abuse-
based filtering. Thus, reducing the amount of traffic each
node exits might reduce their probability of being blocked
by automated abuse-based filtering. The risk of this and other
techniques to fan out traffic to more IP addresses is that it
might cause more websites to preemptively block all Tor exit
traffic. This also does not deter abusive usage of Tor.

We could also consider disincentivizing large-scale abuse
by charging Tor users for traffic usage. The BRAIDS [11]
system proposed an anonymous payment scheme for improved
quality-of-service originally with the goal of disincentivizing
users from performing bulk downloads using Tor. BRAIDS
could also be used to charge Tor users for traffic usage. This
might reduce the amount of abuse, but at the cost of Tor
becoming unusable by people that are not willing or cannot
pay for usage or improved quality-of-service.

D. Redesigning Automated Abuse Blocking

Basing automated abuse blocking on ratios of abusive
to benign requests instead of absolute values might reduce
the instances of higher-bandwidth exit nodes being blocked
by abuse-based filtering. However, this would allow abusive
users to insert benign chaff requests to evade automated abuse
filtering based on ratios instead of fixed limits.

Another idea is to never completely block requests and
instead display CAPTCHAs to low-reputation IP addresses
associated with Tor exit nodes. The risk of websites not
blocking Tor exit node IP addresses is that CAPTCHAs are
an economic deterrent to large-scale abuse that might be
insufficient in cases of profit-driven abuse, such as spam [15].
This highlights the challenges of websites that block Tor exit
node IP addresses in self-defense based on automated abuse
filtering systems.

VII. CONCLUSION AND FUTURE WORK

Anonymous communication on the Internet is a critical
resource for people whose access to the Internet is restricted
by governments. However, the utility of anonymity networks
is threatened by services on the Internet that block or degrade
requests from anonymous users. In this paper, we measured
that at least 1.3 million addresses in the IPv4 address space,
and ≈ 3.67% of the Alexa top 1,000 websites, either block or
offer degraded service to Tor users. Our study provides a first
step in illuminating the scale of the problem and identifying
centralized mechanisms that impact the usability of many sites
for users of anonymity networks. While many websites block
Tor to reduce abuse, doing so inadvertently impacts users from
censored countries who do not have other ways to access
censored Internet content. In the future, we plan to perform
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large-scale studies of the HTTP layer to discover finer-grained
discrimination, such as websites offering restricted services
to anonymous users. We will also investigate more effective
technical and policy-level solutions to mitigate the second-
class treatment of anonymous users. Data availability: All
relevant data, code, and auxiliary information are available
from the University College London database, under the DOI:
http://dx.doi.org/10.5522/00/5
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