Files
lnd-demo-app/Pods/SwiftProtobuf/Sources/SwiftProtobuf/duration.pb.swift
2023-06-08 09:36:06 +03:00

174 lines
7.3 KiB
Swift

// DO NOT EDIT.
// swift-format-ignore-file
//
// Generated by the Swift generator plugin for the protocol buffer compiler.
// Source: google/protobuf/duration.proto
//
// For information on using the generated types, please see the documentation:
// https://github.com/apple/swift-protobuf/
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import Foundation
// If the compiler emits an error on this type, it is because this file
// was generated by a version of the `protoc` Swift plug-in that is
// incompatible with the version of SwiftProtobuf to which you are linking.
// Please ensure that you are building against the same version of the API
// that was used to generate this file.
fileprivate struct _GeneratedWithProtocGenSwiftVersion: SwiftProtobuf.ProtobufAPIVersionCheck {
struct _2: SwiftProtobuf.ProtobufAPIVersion_2 {}
typealias Version = _2
}
/// A Duration represents a signed, fixed-length span of time represented
/// as a count of seconds and fractions of seconds at nanosecond
/// resolution. It is independent of any calendar and concepts like "day"
/// or "month". It is related to Timestamp in that the difference between
/// two Timestamp values is a Duration and it can be added or subtracted
/// from a Timestamp. Range is approximately +-10,000 years.
///
/// # Examples
///
/// Example 1: Compute Duration from two Timestamps in pseudo code.
///
/// Timestamp start = ...;
/// Timestamp end = ...;
/// Duration duration = ...;
///
/// duration.seconds = end.seconds - start.seconds;
/// duration.nanos = end.nanos - start.nanos;
///
/// if (duration.seconds < 0 && duration.nanos > 0) {
/// duration.seconds += 1;
/// duration.nanos -= 1000000000;
/// } else if (duration.seconds > 0 && duration.nanos < 0) {
/// duration.seconds -= 1;
/// duration.nanos += 1000000000;
/// }
///
/// Example 2: Compute Timestamp from Timestamp + Duration in pseudo code.
///
/// Timestamp start = ...;
/// Duration duration = ...;
/// Timestamp end = ...;
///
/// end.seconds = start.seconds + duration.seconds;
/// end.nanos = start.nanos + duration.nanos;
///
/// if (end.nanos < 0) {
/// end.seconds -= 1;
/// end.nanos += 1000000000;
/// } else if (end.nanos >= 1000000000) {
/// end.seconds += 1;
/// end.nanos -= 1000000000;
/// }
///
/// Example 3: Compute Duration from datetime.timedelta in Python.
///
/// td = datetime.timedelta(days=3, minutes=10)
/// duration = Duration()
/// duration.FromTimedelta(td)
///
/// # JSON Mapping
///
/// In JSON format, the Duration type is encoded as a string rather than an
/// object, where the string ends in the suffix "s" (indicating seconds) and
/// is preceded by the number of seconds, with nanoseconds expressed as
/// fractional seconds. For example, 3 seconds with 0 nanoseconds should be
/// encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should
/// be expressed in JSON format as "3.000000001s", and 3 seconds and 1
/// microsecond should be expressed in JSON format as "3.000001s".
public struct Google_Protobuf_Duration {
// SwiftProtobuf.Message conformance is added in an extension below. See the
// `Message` and `Message+*Additions` files in the SwiftProtobuf library for
// methods supported on all messages.
/// Signed seconds of the span of time. Must be from -315,576,000,000
/// to +315,576,000,000 inclusive. Note: these bounds are computed from:
/// 60 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years
public var seconds: Int64 = 0
/// Signed fractions of a second at nanosecond resolution of the span
/// of time. Durations less than one second are represented with a 0
/// `seconds` field and a positive or negative `nanos` field. For durations
/// of one second or more, a non-zero value for the `nanos` field must be
/// of the same sign as the `seconds` field. Must be from -999,999,999
/// to +999,999,999 inclusive.
public var nanos: Int32 = 0
public var unknownFields = SwiftProtobuf.UnknownStorage()
public init() {}
}
// MARK: - Code below here is support for the SwiftProtobuf runtime.
fileprivate let _protobuf_package = "google.protobuf"
extension Google_Protobuf_Duration: SwiftProtobuf.Message, SwiftProtobuf._MessageImplementationBase, SwiftProtobuf._ProtoNameProviding {
public static let protoMessageName: String = _protobuf_package + ".Duration"
public static let _protobuf_nameMap: SwiftProtobuf._NameMap = [
1: .same(proto: "seconds"),
2: .same(proto: "nanos"),
]
public mutating func decodeMessage<D: SwiftProtobuf.Decoder>(decoder: inout D) throws {
while let fieldNumber = try decoder.nextFieldNumber() {
// The use of inline closures is to circumvent an issue where the compiler
// allocates stack space for every case branch when no optimizations are
// enabled. https://github.com/apple/swift-protobuf/issues/1034
switch fieldNumber {
case 1: try { try decoder.decodeSingularInt64Field(value: &self.seconds) }()
case 2: try { try decoder.decodeSingularInt32Field(value: &self.nanos) }()
default: break
}
}
}
public func traverse<V: SwiftProtobuf.Visitor>(visitor: inout V) throws {
if self.seconds != 0 {
try visitor.visitSingularInt64Field(value: self.seconds, fieldNumber: 1)
}
if self.nanos != 0 {
try visitor.visitSingularInt32Field(value: self.nanos, fieldNumber: 2)
}
try unknownFields.traverse(visitor: &visitor)
}
public static func ==(lhs: Google_Protobuf_Duration, rhs: Google_Protobuf_Duration) -> Bool {
if lhs.seconds != rhs.seconds {return false}
if lhs.nanos != rhs.nanos {return false}
if lhs.unknownFields != rhs.unknownFields {return false}
return true
}
}